
EÆcient Multi-Party Challenge-Response Protocols

for Entity Authentication

Levente Butty�an,� Attila Nagy,y Istv�an Vajdaz

April 2001

�Swiss Federal Institute of Technology { Lausanne, Institute for Computer Communi-

cations and Applications, EPFL-DSC-ICA, CH-1015 Lausanne, levente.buttyan@ep
.ch
yBudapest University of Technology and Economics, Faculty of Natural Sciences,

nagy@math.bme.hu
zBudapest University of Technology and Economics, Department of Telecommunica-

tions, Sztoczek u. 2, H-1111 Budapest, vajda@hit.bme.hu

1

Abstract

In this paper, we address the problem of multi-party entity authen-

tication. We prove that the lower bound on the number of messages of

multi-party challenge-response protocols is 2n�1, where n is the num-

ber of the participants of the protocol, and propose two protocols that

achieve this lower bound. Our protocols are, thus, eÆcient in the sense

that they use the minimum number of messages required to solve the

multi-party entity authentication problem based on challenge-response

principles.

keywords: challenge-response protocols, protocol graph, entity authen-

tication, re
ection attack

2

1 Introduction

Entity authentication is the process whereby a party gains assurance of the

identity of another party involved in a protocol [7]. Entity authentication is a

fundamental security service, which is used for preventing impersonation and

unauthorized access to services in distributed systems. Common examples

for entity authentication include user authentication in computer systems

(login procedure) and subscriber authentication in GSM networks.

Strong entity authentication is based on cryptographic challenge-response

protocols, in which a party (the prover) proves its identity to another party

(the veri�er) by demonstrating knowledge of a secret that is known to be

associated with the prover. This is done by providing a response to a time-

variant challenge, where the response depends on both the secret and the

challenge in such a way that an attacker cannot obtain the secret from the re-

sponse. Furthermore, since subsequent challenges di�er, the attacker cannot

use the response from one execution of the protocol in a subsequent execu-

tion. Depending on the mechanisms used, the veri�er may or may not know

the secret that is used in the computation of the response. If the veri�er

does not know the secret, nevertheless, it can still verify the response, then

the protocol is called zero-knowledge protocol [10]. In this paper, we are

not concerned with this type of protocols, but exclusively focus on classical

challenge-response protocols, where the veri�er knows the secret associated

with the prover, and uses it to verify the response.

A considerable amount of work has been carried out on the design and

analysis of two-party challenge-response protocols for entity authentication

[9, 3]. In this paper, we consider the multi-party case, which, to the best of

our knowledge, has been neglected so far. In multi-party entity authentica-

tion, each of the n (n � 2) participating parties proves its identity to each of

the other parties. Although, in principle, multi-party entity authentication

can be obtained by running two-party mutual entity authentication proto-

cols between each pair of parties, in practice, this approach is not desirable,

because it leads to highly ineÆcient protocols that use O(n2) messages. We

propose much more eÆcient protocols that use only O(n) messages. Further-

more, we show that our protocols are optimal in the sense that no protocol

can solve the problem with less number of messages than ours do.

In spite of their apparent simplicity, the design of entity authentication

protocols is surprisingly error prone, especially, if they are combined with

session key establishment. Many protocols have been proposed that were

found to be
awed and vulnerable to some form of replay attack later [5].

The reason for this is that
aws are usually subtle and hard to �nd. In order

3

to solve this problem, many papers propose methods that can be used for

formal veri�cation of entity authentication and key establishment protocols

[4, 6, 11], and principles that can help to avoid common mistakes in their

design [1, 2]. In this paper, we do not aim at contributing to these e�orts,

but we rather build on them: we adhere to the design principles of [1] and

use a formal logic [11] to explain some of the subtle details of our protocols.

The outline of the paper is the following. In Section 2, we introduce our

system model and clarify the concept of entity authentication in this model.

Then, in Section 3, we prove that the lower bound on the number of messages

of multi-party challenge-response protocols for entity authentication is 2n�

1, where n is the number of participants of the protocol. Before presenting

our protocols, which achieve this lower bound, we review two
awed entity

authentication protocols in Section 4. Our aim is to give an insight into

two design principles that our protocols build on. In Section 5, we present

our protocols and analyze them with the help of a formal logic. Finally, in

Section 6, we conclude the paper.

2 System model and the goal of entity authenti-

cation

We consider a system that consists of a set of principals (users, hosts, and

processes) and a network that connects them. Principals communicate with

each other by sending messages via the network. In order to authenticate

each other, a subset of the principals may engage in a given multi-party

entity authentication protocol. We assume that all the principals know this

protocol. We also assume that any of the principals can play any of the

roles in the protocol1 (e.g., in case of two-party protocols, anybody can be

initiator as well as responder). We further assume that principals may run

several instances of the protocol concurrently, and play di�erent roles in

di�erent instances.

As usual in the literature [8], we assume that the network is under the

control of the attacker. This means that the attacker can observe every mes-

sage sent via the network, furthermore, it can intercept, modify, generate,

delay, and replay messages or parts of them. We assume that the attacker

knows the protocol that is run by the principals, and it may try to play any

of its roles. In addition, it can arrange that a principal starts an instance of

1Later, we will introduce special roles (e.g., authentication server), which can be played

only by designated principals. We omit this issue in the presentation of the general system

model, because it depends on the particular protocol in question.

4

the protocol at any time chosen by the attacker. On the other hand, the at-

tacker does not know any of the long-term secrets associated with legitimate

principals (see also next paragraph), and it cannot break the cryptographic

primitives used for encryption, digital signature, etc. This leaves the at-

tacker with the only possibility to mount a replay attack, in which it tries

to impersonate some principals by constructing fake messages from data

recorded in previous and/or concurrent runs of the protocol.

Sometimes we assume that the attacker compromised the long-term se-

cret of a principal or a small subset of principals. In this case, we are

interested in if the attacker can use the compromised secret(s) to imperson-

ate a principal that is not compromised. If the authentication protocol is

designed properly, then this should not be possible. Note, however, that

the attacker can always impersonate the compromised principals, no matter

how careful the design of the authentication protocol was.

As we said before, entity authentication is the process whereby a party

gains assurance of the identity of another party involved in a protocol. At

�rst sight, this suggests that a principal can use an entity authentication

protocol to verify that the identity of another principal with which it com-

municates (i.e., from which it received a message), is as claimed. Note,

however, that in our system model, each principal does actually communi-

cate with the attacker, because messages are sent to and received from the

network, which is under the control of the attacker. What can an entity au-

thentication protocol achieve in this model? Indeed, all we can expect from

a correct entity authentication protocol is that it guarantees for a principal

who successfully run it that the assumed other participating principals were

present and sent some messages during the protocol run. We formalize this

concept in the following de�nition:

De�nition 1 (Entity authentication) Let us consider two principals A

and B. We say that A authenticated B if there exists a bounded time interval

I in the local time of A such that A is convinced that B was alive (i.e., sent

some messages) in I.

Example 1 As an example let us consider the following unilateral two-party

entity authentication protocol:

1. B ! A : fTg
K
�

b

The protocol works as follows: B digitally signs the current value T of

its local clock using its private key K
�

b
, and sends the signed time-stamp

5

fTg
K
�

b
to A. It is assumed that the clocks of A and B are synchronized

with some accuracy �t. This means that at any time t the local clock

ca(t) of A and the local clock cb(t) of B do not di�er more than �t (i.e.,

8t : jca(t)�cb(t)j � �t). When A receives the message, it veri�es the digital

signature of B. If this veri�cation is successful, then A authenticated B,

since it is convinced that B was alive and used its private key at some time

in the interval [T ��t; T +�t] in the local time of A (see Figure 1). 2

{T}Kb
-

T
Dt

Dt

T

{

{

A B

Figure 1: A is convinced that B was alive at some time in the interval

[T ��t; T +�t]

Example 2 Another common example for a unilateral two-party entity

authentication protocol is the following:

1. A! B : r

2. B ! A : frg
K
�

b

Here, A generates an unpredictable random number r, and sends it to B

at time T1 in its local time. B signs r with its private key K
�

b
, and sends

the result frg
K
�

b
back to A. A receives B's response at time T2 in its local

time, and veri�es that it is indeed its random number r signed by B. If this

veri�cation is successful, then A authenticated B, since it is convinced that

B was alive and used its private key at some time in the interval [T1; T2]

(see Figure 2). 2

3 Lower bound on the number of messages

After having de�ned what we mean by entity authentication, we now turn

our attention to multi-party entity authentication protocols in which each

6

{r}Kb
-

T1

T2

A B

r

Figure 2: A is convinced that B was alive at some time in the interval [T1; T2]

party authenticates every other participating party. We are exclusively con-

cerned with challenge-response type protocols, where authentication is based

on response to an unpredictable random challenge (like in Example 2). The

question we investigate in this section is: What is the lower bound on the

number of messages in multi-party challenge-response protocols for entity

authentication?

We start by constructing a model of the protocol, in which we abstract

away from the exact content of messages and retain only the message passing

structure of the protocol:

De�nition 2 (Protocol graph) Let us represent a protocol with a directed

graph G = (V;E), where V is the set of vertices and E is the set of edges

in G. Each vertex of G represents a party of the protocol, and it is labeled

with the name of that party. The edges of G correspond to the messages

of the protocol; each messages sent by party A to party B is represented by

a directed edge from the vertex that is labeled with A to the vertex that is

labeled with B.

We de�ne the following binary relations on the edges of G:

De�nition 3 (Precedence) The precedence relation is a subset P of E�E

such that for all (e; f) 2 P the message that corresponds to e is sent earlier

than the message that corresponds to f in every execution of the protocol.

If (e; f) 2 P , then we say that e precedes f or f succeeds e, and we denote

this by e � f .

De�nition 4 (Precedence or equality) The precedence or equality rela-

tion is a subset P 0 of E � E de�ned as P 0 = P [f(e; f) 2 E � E : e = fg.

We use the e � f notation to denote that (e; f) 2 P
0.

7

It is clear that if message e is always sent earlier than message f , and

f is always sent earlier then g, then e is always sent earlier than g, which

means that P and P
0 are transitive (i.e., e � f � g implies e � g, and

e � f � g implies e � g). In addition, P 0 is re
exive and antisymmetric as

well (i.e., e � e, and e � f and f � e implies e = f). Therefore, P 0 is a

partial ordering. The reason for being only partial and not total ordering is

that the protocol may have concurrent messages, the order of which cannot

be guaranteed. This means that G may have two edges e and f , such that

neither e � f nor f � e.

We �nd it convenient in explaining the theory to introduce a notation

for directly preceding edges:

De�nition 5 (Direct precedence) An edge e directly precedes an edge f ,

denoted by e� f , if e � f and there is no other edge g such that e � g � f .

The following lemma states that directly preceding edges must be joined

by a common vertex:

Lemma 1 Let us consider a protocol graph G. If for two edges e = (u; v)

and f = (w; z) in G, e� f , then v = w.

Proof: Let us assume that v 6= w. This means that they correspond to

di�erent parties of the protocol. Let the parties that belong to v and w be

A and B, respectively. In order to guarantee that message f is sent after

message e in every execution of the protocol, A and B must be synchronized:

A must be able to notify B that e arrived, and B must send f only if it

received this noti�cation. This means, however, that the protocol must

have a message g (the noti�cation), which succeeds e and precedes f . This

contradicts our assumption that e� f . 2

Lemma 2 Let us consider a protocol graph G. If for two edges e and f in

G, e � f , then either e � f , or there is a sequence of edges g1; g2; : : : ; gk,

where k � 1, such that e� g1 � g2 � : : :� gk � f .

Proof: Let us denote the set of edges that succeeds e and precedes f by G

(i.e., G = fg 2 E : e � g � fg). If G is empty, then e� f by de�nition. So

let us assume that G is not empty. Let g be (one of) the \latest" edge(s) in

G (i.e., there is no g0 2 G such that g � g
0). Note that because of the �nite

size of G, and thus G, such an edge always exists. g must directly precede

f , because if there was an edge g0 such that g � g
0 � f , then g

0 would be

in G, and g would not be (one of) the latest edge(s). Thus, we have that

8

e � g � f . Now we can repeat the same argument for e � g. Since G is

�nite, after a �nite number k of repetition, we are done. 2

According to De�nition 1, a party A authenticated a party B if A is

convinced that B was alive and sent some messages in a bounded time

interval I in the local time of A. In case of challenge-response protocols,

I is de�ned by the time of sending a challenge and the time of receiving a

response. Therefore, the following lemma holds for any challenge-response

protocol for entity authentication:

Lemma 3 Let us consider a challenge-response protocol for entity authen-

tication and its protocol graph G. Let A and B be two parties of the protocol,

and let us denote the vertices that correspond to A and B by u and v, respec-

tively. If party A authenticates party B in the protocol, then there exist three

edges e, e0, and f in G such that e is an outgoing edge from u (challenge),

e
0 is an incoming edge to u, f is an outgoing edge from v (response), and

e � f � e
0.

Corollary of Lemma 3: A direct consequence of the previous lemma is

that if each party authenticates at least one other party in the protocol,

then each vertex of G has an outgoing edge e and an incoming edge e0 such

that e � e
0. 2

Lemma 4 Let us consider a challenge-response protocol for entity authenti-

cation and its protocol graph G. If each party authenticates every other party

in the protocol, then any two vertices of G are connected with a directed path.

Proof: Let us consider two vertices u and v of G, where u corresponds to

party A and v corresponds to party B. Because of Lemma 3, there exist two

edges e and f such that e originates from u, f originates from v, and e � f .

Using Lemma 2, we get that either e � f , or there is a sequence of edges

g1; g2; : : : ; gk; (k � 1) such that e � g1 � g2 � : : : � gk � f . Because of

Lemma 1, this means, in both cases, that there is a directed path from u to

v. 2

Corollary of Lemma 4: A consequence of Lemma 4 is that if each party

authenticates every other party in the protocol, then the protocol graph is

connected.2

We now introduce the notion of unfolded protocol graphs. The unfolded

protocol graph ~G of the protocol graph G can be obtained by the following

procedure:

9

We build up ~G from G step-by-step starting from an empty graph and

extending it with one new edge taken from G in each step. During the

construction of ~G, we execute a depth-�rst search on the edges of G following

the direct precedence relation on the edges. This search determines the

order in which the edges of G are processed and inserted in ~G, as well as the

originating vertex of each new edge in ~G.

Let us assume that the �rst edge given by the depth-�rst search is e =

(u; v). Since at this point ~G is empty, we simply insert a new edge ~e (with new

originating and destination vertices) in ~G. The originating and destination

vertices of ~e get the same labels as u and v, respectively.

Now, let us assume that we have processed edge e0 from G and inserted ~e0

in ~G. Furthermore, let us assume that the next edge given by the depth-�rst

search is e00 = (u00; v00). There are two cases: (1) e0 � e
00 or (2) there is no

edge that succeeds e0, and e00 is obtained by backtracking (i.e., stepping back

on already processed edges up to an edge which has an as yet unprocessed

direct successor). The originating and destination vertices of the new edge

~e00 inserted in ~G is determined as follows:

Case (1)

� Originating vertex: the originating vertex of ~e00 is the destination ver-

tex of ~e0.

� Destination vertex:

{ if a direct successor f of e00 has already been processed and the

corresponding edge ~f has already been inserted in ~G, then the

destination vertex of ~e00 is the originating vertex of ~f ,

{ if no direct successor of e00 has been processed yet, then the des-

tination vertex of ~e00 can be any vertex in ~G that has the same

label as v00 has, given that this does not cause a directed loop in
~G,

{ otherwise a new vertex is inserted in ~G with the same label as v00

has, and this new vertex becomes the destination vertex of ~e00.

Case (2)

� Originating vertex: we perform a backtracking in ~G parallel with the

backtracking in G. The vertex, in which this parallel backtracking

stops, becomes the originating vertex of ~e00.

10

� Destination vertex: the same applies as in case (1).

A

B

C

D

e

f

g

h

i

j

protocol graph G unfolded protocol graph G
~

e << f; e << g; g << h;
f << i; h << i; f << j; h << j

e

f

g
h

i

j

A
B

C

D

A

B

~

~

~
~

~

~

Figure 3: An example for unfolding a protocol graph

As an example, let us consider Figure 3. Given the protocol graph on the

left hand side of the �gure, the procedure builds the unfolded protocol graph

on the right hand side. According to the depth-�rst search, the edges are

processed in the following order: e, g, h, j, i, and f . ~e, ~g, and ~h are simply

inserted in ~G one after the other. In order to avoid a directed loop, when ~j is

inserted, we need to add a new vertex with label A to ~G, and this new vertex

becomes the destination vertex of ~j. Since j does not have any successor in

G, we then perform a backtracking, which stops at the destination vertex

of h in G, and the destination vertex of ~h in ~G. Therefore, the originating

vertex of the next edge to insert (i.e., ~i) will be the destination vertex of ~h.

As before, in order to avoid a directed loop, we need to add a new vertex,

this time with label B, to ~G, and this new vertex becomes the destination

vertex of ~i. Then we perform a backtracking again, which stops at the

destination vertex of e in G, and the destination vertex of ~e in ~G. Therefore,

the originating vertex of the last edge ~f will be the destination vertex of

~e. f has two direct successors i and j in G, and both of them have already

been processed and inserted in ~G. Thus, the destination vertex of ~f will be

the originating vertex of ~i and ~j.

The following lemma guarantees that, for all the direct successors f; f 0; : : :

of an edge e, the corresponding edges ~f; ~f 0; : : : originate from the same ver-

tex in ~G. This ensures that we can always unambiguously determine the

destination vertex of an edge to be inserted in ~G if its direct successors have

already been processed and inserted in ~G.

11

Lemma 5 If two concurrent edges e and f originate from the same vertex

in G, then the corresponding edges ~e and ~f originate from the same vertex

in ~G.

Proof: Let us assume that the procedure processes e and inserts ~e �rst.

Then, it continues with the successors of e. When all the successors of

e are processed we perform the backtracking in the protocol graph and

in the (partial) unfolded protocol graph as well. Since f is not processed

yet the backtracking stops at the originating vertex of f (which is also the

originating vertex of e) in G and in the originating vertex of ~e in ~G. Therefore,

this vertex (the originating vertex of ~e) will be the originating vertex of ~f .

2

The following statements are direct consequences of the unfolding pro-

cedure given above:

Lemma 6 Let us consider a protocol graph G = (E; V) and its unfolded

protocol graph ~G = (~E; ~V).

� ~G is a Directed Acyclic Graph (DAG);

� if G is connected, then ~G is connected as well;

� jEj = j ~Ej and there exists a one-to-one mapping m : E ! ~E such

that if e � f in G, then the destination vertex of m(e) = ~e and the

originating vertex of m(f) = ~f are the same in ~G.

� The vertices of ~G are labeled with the names of the protocol participants

in such a way that for any edge ~e in ~G, the labels on the originating and

destination vertices of ~e are the same as the labels on the originating

and destination vertices of m�1(~e) = e in G, respectively.

Now, we are ready to state and prove the main result of this section:

Theorem 1 Any n-party challenge-response protocol for entity authentica-

tion, in which each party authenticates every other party, uses at least 2n�1

messages.

Proof: Let us consider the protocol graph G of the protocol and the unfolded

protocol graph ~G. First, using the corollary of Lemma 4, we get that G is

connected, and from this, using Lemma 6, we get that ~G is connected as

well. Second, from the corollary of Lemma 3, we get that each vertex u of

12

G has an outgoing edge e and an incoming edge e0 such that e � e
0. The

corresponding edges in ~G are ~e = m(e) and ~e0 = m(e0), respectively. The

originating vertex ~u of ~e and the destination vertex ~v0 of ~e0 have the same

labels in ~G, because they both inherited the label of u in G. However, ~u

cannot be the same as ~v0, since according to Lemma 2 and the construction

of ~G, this would mean that there is a directed loop in ~G. This means that

each label is used at least twice in ~G, or in other words, that ~G has at least

2n vertices. It is well-known that the minimum number of edges that can

connect 2n vertices is 2n � 1. Therefore, ~G has at least 2n � 1 edges. By

Lemma 6, however, G has the same number of edges as ~G, and each edge in

G represents a message in the protocol. 2

4 Two lessons learned

Before presenting our protocols, we recall two common
aws in entity au-

thentication protocols by reviewing two protocols that exhibit these
aws.

The �rst one is a unilateral entity authentication protocol, which is similar

to the protocol of Example 2, but this time symmetric key cryptography is

used:

1. A! B : ra

2. B ! A : fragKab

The protocol works as follows: A sends an unpredictable random number

ra to B. B encrypts the received challenge with the symmetric key Kab that

it shares with A, and sends the encrypted random number fragKab
back

to A. A decrypts the response with the same key, and veri�es that the

resulted cleartext is indeed its random number ra. The claim is that if this

veri�cation is successful, then A authenticated B.

This is wrong, because A cannot be sure that it was B who encrypted

ra with Kab, since B is not the only one who can encrypt with this key.

Ironically, it may be A itself who generated fragKab
in a concurrent run

of the same protocol initiated by the attacker. The attack scenario that

exploits this
aw is illustrated in Figure 4.

In this attack, the attacker impersonates B. In order to do so, it has to

respond to the challenge of A by encrypting ra with Kab. Since it does not

possess this key, it cannot itself perform the encryption. Instead, it starts a

new instance of the protocol with A pretending to be B, and challenges A

with ra. Recall that, according to our system model introduced in Section 2,

A may run several instances of the protocol concurrently, and it may play

13

A attacker

ra

{ra}Kab

{ra}Kab

ra

Figure 4: Re
ection attack

di�erent roles in di�erent instances. Here, A runs two instances of the

protocol, and in the �rst one it plays the initiator, while in the second one

it plays the responder role. Hence, A encrypts the false challenge with Kab

and sends the result to the attacker in the second instance. The attacker

can now replay it back to A and complete the attack in the �rst instance.

The usual solution proposed in the literature for this problem is to in-

clude a direction label explicitly in each encrypted message. A protocol can,

for instance, adopt the convention that each encrypted message contains

the name of the principal who generated it (i.e., a from �eld). In a more

economical solution, the direction label can even be a single bit. One can

imagine, for instance, that the names of the principals can be lexicographi-

cally ordered (bit strings typically have this property). Then each encrypted

message sent by A to B, where A < B, could contain a 0, while encrypted

messages in the reverse direction could contain a 1. When a principal de-

crypts a message, it looks at the direction label, and if this indicates that the

message was generated by the principal itself, then the message is discarded.

The conclusion is the following:

Lesson 1: If symmetric key encryption is used, then some mechanism is

needed to ensure that the intended direction of each encrypted message can

unambiguously be determined by those who can decrypt the message. 2

The next example for a
awed entity authentication protocol is the Woo-

Lam protocol [12]:

1. A! B : A

2. B ! A : rb

3. A! B : frbgKas

4. B ! S : fA; frbgKasgKbs

14

5. S ! B : frbgKbs

A major di�erence between this protocol and the previous one is that

this one uses a designated principal called the authentication server S. In-

stead of sharing keys with each other, principals share a secret key with

the authentication server. It is also assumed that the authentication server

is trusted for correctly translating a message encrypted with the key of a

principal to a message encrypted with the key of another principal.

The Woo-Lam protocol works as follows: A claims that its identity is

A. In order to verify this, B challenges A with an unpredictable random

number rb. A proves its identity by encrypting the challenge with the key

Kas, which it shares with the authentication server S. The response frbgKas

is sent to B. Since B does not possess Kas, it cannot verify the response.

Therefore, it calls for the help of the authentication server: B sends the

message fA; frbgKasgKbs
to S. S decrypts the request and then decrypts

A's response inside; it knows that it has to use Kas for decrypting the

response, because the request contains the name of A. Then, S encrypts

the resulted random number with the key Kbs and sends frbgKbs
to B.

Finally, B decrypts the message of S and veri�es that it received back its

random number rb. The claim is that if this veri�cation is successful, then

B authenticated A.

This time, it is not so obvious why this is wrong. Nevertheless, the pro-

tocol is known to be vulnerable [1] to the following attack (Figure 5): Let

us assume that the attacker compromised the key of a legitimate principal

M of the system. This means that the attacker knows the key Kms shared

by M and the server S. Using this key, it can impersonate A (who is not

compromised) to B. The attacker starts two instances of the protocol with

B concurrently; the �rst instance is started in the name of A and the second

one is in the name of M . B generates two random numbers rb and r
0

b
and

sends them as challenges to A and M , respectively. These messages are

intercepted by the attacker and they never arrive to A andM . The attacker

then encrypts rb, which was intended for A, with the key Kms and sends the

result frbgKms to B in both instances of the protocol. It is very likely that

the protocol is implemented in such a way that B does not check responses

received in di�erent instances of the protocol for equality. Therefore, B

believes that it received the responses from A and M , and sends the cor-

responding requests fA; frbgKmsgKbs
and fM; frbgKmsgKbs

, respectively,

to S. S decrypts the received responses with Kas and Kms, respectively,

thus, using the wrong key for the �rst response. Let us denote the result of

decrypting frbgKms with Kas by x. Because of the properties of symmetric

15

Battacker

rb'

{rb}Kms

rb

A

M

{rb}Kms

S

{A, {rb}Kms }Kbs

{M, {rb}Kms }Kbs

{rb}Kbs

{x}Kbs

Figure 5: Attack against the Woo-Lam authentication protocol

key ciphers, x looks like a random number. Since the authentication server

expects a random number as a result of the decryption, and it cannot check

that it is the right number, because it does not know what was the challenge

sent by B to A, it accepts x, and does not detect the attack. It responds

to the requests of B by sending fxgKbs
and frbgKbs

to B. When B veri-

�es these messages, it recognizes that the �rst response is wrong. It does,

however, accept the second one, which contains rb, and since this number

was the challenge for A, B attributes the second response to A. Finally, B

concludes that A was alive and responded to its challenge, while someone

might try to impersonate M .

The source of the
aw is that the authentication server suppresses some

critical information when it responds to a request: it does not tell the re-

questing principal which key it used to decrypt the response. At �rst glance,

one might think that the requesting principal can infer this information from

the context, but, as the previous attack shows, this is false. Therefore, it is

more secure to mention which key was used by putting a key identi�er or

the name of the corresponding principal in the last message.

16

The lesson we can learn from this example is the following:

Lesson 2: If a trusted mediator is used to translate a message encrypted

with a given key K to a message encrypted with another key K
0, then all

the semantical information of the original message must be retained. In

particular, the translated message should contain the key identi�er of K or

other equivalent data from which this information can be securely inferred

by the destination of the translated message. 2

5 Multi-party entity authentication protocols

In Section 3, we proved that the lower bound on the number of messages of

n-party challenge-response protocols for entity authentication is 2n� 1. In

this section, we present two protocols that achieve this lower bound. Both

protocols have the same message passing structure, but they di�er in the

assumptions about trust among the protocol participants, and thus, in the

content (semantics) of messages.

5.1 Message passing structure

Before going into the details of our protocols, it is worth to tell some words

about their message passing structure. We recall Lemma 3, which states

that if A authenticates B in a given challenge-response protocol, then there

must be three edges e, e0, and f in the protocol graph such that e is an

outgoing edge from u, e0 is an incoming edge to u, f is an outgoing edge

from v, and e � f � e
0, where u and v are the vertices that correspond to

A and B, respectively. This actually means, that in the unfolded protocol

graph, there is a directed path, which starts from and ends in a vertex that

is labeled with A, and goes through a vertex that is labeled with B. If A

authenticates every other party B;C; : : : in the protocol, then each of these

parties, or more precisely vertices that are labeled with their names, must

be traversed by a directed path starting from and ending in a vertex that is

labeled with A. Note that one single path can do the job (see Figure 6 (a)).

If B;C; : : : also authenticate every other party in the protocol, then there is

a similar path for B;C; : : : as well. We obtain the protocol with the least

number of messages by maximally overlapping these paths (see Figure 6

(b)). The resulting protocol graph has exactly 2n� 1 edges (Figure 6 (c)).

17

A B C A

B C A B

C A B C

A B C A B C

e
f

g

h

i

e << f << g << h << i

(a)

(b)

(c)

A

B

C

A B C A

Figure 6: Message passing structure of the basic protocols

5.2 Protocols

In order to make the presentation easier, we describe the three-party ver-

sions of our protocols in detail and sketch the general n-party versions only

brie
y. In addition, we should also mention that our protocols use symmet-

ric key cryptography, but it is straightforward to obtain the versions that

use asymmetric key cryptography by replacing symmetric key encryption

with digital signatures of the appropriate parties.

Protocol 1:

� Principle: The basic idea of Protocol 1 is the following: Each par-

ticipant generates an unpredictable random number, which is used as

18

a challenge. Challenges are passed around among the protocol par-

ticipants in a circulating message. Each participant that receives the

message and sees the challenges that the message contains includes its

identi�er in the message before passing it further to the next partici-

pant. When a challenge gets back to the principal that generated it,

the message contains the list of those principals that saw the challenge

and forwarded the message. These forwarding principals must have

been alive during the protocol run.

� Assumptions: We assume that each pair of principals in the system

share a long-term secret key. The secret key shared between A and B,

for instance, is denoted by Kab. We also assume that principals trust

each other for executing the protocol honestly. In particular, each

principal must be trusted for correctly attributing a received message

to its sender and faithfully copying all the relevant �elds of the received

message into the message that is passed further. We will return to

this issue of trust later when we analyze Protocol 1 in Subsection 5.3.

Finally, we assume that each protocol participant knows (or at least

has an assumption about) who the other participants are from the

context or additional plaintext �elds not mentioned in the description

below.

� Messages of the three-party version:

1. A! B : ra

2. B ! C : rb; fB; ragKbc

3. C ! A : rc; fC; rb; B; ragKac

4. A! B : fA; rc; C; rbgKab

5. B ! C : fB; A; rcgKbc

� Description of the three-party version: A generates an unpredictable

random number ra, and sends it to B in message 1. Upon reception of

message 1, B generates an unpredictable random number rb, encrypts

its own identi�er B and the random number ra with the key Kbc,

and sends rb and the result of the encryption to C in message 2.

The identi�er in the encrypted part serves as an explicit direction

label that allows B to recognize its own messages. Upon reception

of message 2, C decrypts the encrypted part, and veri�es that it was

indeed generated by B by checking the identi�er in the �rst �eld.

If this veri�cation is successful, then C generates an unpredictable

19

random number rc, encrypts its own identi�er C, the random number

rb, the identi�er of B, and the random number ra with the key Kac,

and sends rc and the result of the encryption to A in message 3. The

identi�er of C serves again as a direction label. When A receives

message 3, it decrypts the encrypted part of it, and veri�es that it

was indeed generated by C by checking the identi�er in the �rst �eld.

Furthermore, it checks if it received back its random number ra and

if the message contains the identi�er of B too. If these veri�cations

are successful, then A authenticated B and C, and it continues by

encrypting its own identi�er A, the random number rc, the identi�er

of C, and the random number rb with the key Kab. A sends the result

of the encryption to B in message 4. When B receives message 4, it

decrypts it, and veri�es that it was indeed generated by A by checking

the identi�er in the �rst �eld. Furthermore, it checks if it received back

its random number rb and if the message contains the identi�er of C

too. If these veri�cations are successful, then B authenticated A and

C, and it continues by encrypting its own identi�er B, the identi�er

of A, and the random number rc with the key Kbc. B sends the

result of the encryption to C in message 5. Finally, when C receives

message 5, it decrypts it, and veri�es that it was indeed generated by

B by checking the identi�er in the �rst �eld. It also checks if it received

back its random number rc and if the message contains the identi�er

of A too. If these veri�cations are successful, then C authenticated A

and B and the protocol terminates.

� Messages of the n-party version:

1. P1 ! P2 : r1

2. P2 ! P3 : r2; fP2; r1gK2;3

3. P3 ! P4 : r3; fP3; r2; P2; r1gK3;4

4. P4 ! P5 : r4; fP4; r3; P3; r2; P2; r1gK4;5

: : : : : : : : :

n. Pn ! P1 : rn; fPn; rn�1; Pn�1; rn�2; Pn�2; : : : ; r2; P2; r1gK1;n

n+ 1. P1 ! P2 : fP1; rn; Pn; rn�1; Pn�1; : : : ; r3; P3; r2gK1;2

n+ 2. P2 ! P3 : fP2; P1; rn; Pn; rn�1; Pn�1; : : : ; r4; P4; r3gK2;3

: : : : : : : : :

2n� 1. Pn�1 ! Pn : fPn�1; Pn�2; Pn�3; : : : ; P1; rngKn�1;n

� Remark for the n-party version: Let us consider any of the encrypted

messages of the protocol above. For a given random number r in this

20

message, the identi�ers that stand before r correspond to those parties

who have already seen and forwarded r. For instance, in message n,

the identi�ers before r2 are P3; P4; : : : ; Pn, and indeed, apart from

P1, all the participants have already seen r2 when message n is sent.

Therefore, when a party receives back its random number in a message,

it must check if all the other parties are listed before its random number

in the message.

Note that Protocol 1 takes into account Lesson 1 and Lesson 2 of Sec-

tion 4. First, we used sender identi�ers (from �elds) as explicit direction

labels in messages in order to prevent re
ection attacks. Second, since each

party acts as a trusted mediator, and translates messages encrypted with

one key for messages encrypted with another key, we ensured that all the

semantical information of the original message is retained by keeping all

�elds that are relevant for the further processing of the translated message

(including the identi�er of the sender of the original message).

Protocol 2:

� Principle: The main drawback of Protocol 1 is that it relies on the

assumption that the protocol participants trust each other for honestly

executing the protocol. In Protocol 2, we remove this assumption.

The main idea of Protocol 2 is that we allow each protocol participant

to directly verify who responded its challenge. Like in Protocol 1,

the challenge of each participant is passed around among the other

participants, but unlike in Protocol 1, this time it is encrypted with

the key that is shared by the challenging and the responding principals

before it is passed further to the next participant. Indeed, responding

parties do not encrypt the challenge itself, but the encrypted challenge

that they receive from the previous responding party. The challenging

party �nally receives back its random number encrypted by every other

party, one after the other. The challenging party veri�es the response

by decrypting it with the keys it shares with the other parties. If, after

performing all the decryptions, it recovers its original random number,

then it is convinced that all the other parties were alive during the

protocol run.

� Assumptions: We assume that each pair of principals in the system

share a long-term secret key, and each protocol participant knows (or

at least has an assumption about) who the other participants are from

21

the context or additional plaintext �elds not mentioned in the descrip-

tion below.

� Messages of the three-party version:

1. A! B : ra

2. B ! C : rb; fB; ragKab

3. C ! A : rc; fC; rbgKbc
; fC; fB; ragKab

gKac

4. A! B : fA; rcgKac ; fA; fC; rbgKbc
gKab

5. B ! C : fB; fA; rcgKacgKbc

� Description of the three-party version: A generates an unpredictable

random number ra, and sends it to B in message 1. Upon reception of

message 1, B generates an unpredictable random number rb, encrypts

its own identi�er B and the random number ra with the key Kab, and

sends rb and the result of the encryption to C in message 2. Like in

Protocol 1, in Protocol 2 as well, the identi�er of the encrypting party

in an encrypted message always serves as an explicit direction label

to foil re
ection attacks. Upon reception of message 2, C generates

an unpredictable random number rc, encrypts its own identi�er C and

the random number rb with Kbc, encrypts its own identi�er C and the

encrypted part of message 2 with Kac, and sends rc and the results of

the encryptions to A in message 3. When A receives message 3, it �rst

veri�es the last encrypted part of it by decrypting it with the keys Kac

and Kab, and checking the identi�ers and the random number found

inside. If the identi�ers match those of C and B, and the random

number matches ra, then A authenticated B and C, and it continues

by encrypting its own identi�er A and the random number rc with the

key Kac, and encrypting its own identi�er A and the other encrypted

part of message 3 with the key Kab. Then A sends the results of

the encryptions to B in message 4. When B receives message 4, it

veri�es the last encrypted part of it by decrypting it with the keys Kab

and Kbc, and checking the identi�ers and the random number found

inside. If the identi�ers match those of A and C, and the random

number matches rb, then B authenticated A and C, and it continues

by encrypting its own identi�er B and the other encrypted part of

message 4 with the key Kbc. Then B sends the result of the encryption

to C in message 5. Finally, when C receives message 5, it veri�es it by

decrypting it with the keys Kbc and Kac, and checking the identi�ers

and the random number found inside. If the identi�ers match those of

22

B and A, and the random number matches rc, then C authenticated

A and B, and the protocol terminates.

� Messages of the n-party version:

1. P1 ! P2 : r1

2. P2 ! P3 : r2; fP2; r1gK1;2

3. P3 ! P4 : r3; fP3; r2gK2;3
; fP3; fP2; r1gK1;2

gK1;3

: : : : : : : : :

n. Pn ! P1 : rn; fPn; rn�1gKn�1;n
;

fPn; fPn�1; rn�2gKn�2;n�1
gKn�2;n

; : : : ;

fPn; fPn�1; : : : fP2; r1gK1;2
: : :gK1;n�1

gK1;n

n+ 1. P1 ! P2 : fP1; rngK1;n
;

fP1; fPn; rn�1gKn�1;n
gK1;n�1

; : : : ;

fP1; fPn; : : : fP3; r2gK2;3
: : :gK2;n

gK1;2

n+ 2. P2 ! P3 : fP2; fP1; rngK1;n
gK2;n

;

fP2; fP1; fPn; rn�1gKn�1;n
gK1;n�1

gK2;n�1
; : : : ;

fP2; fP1; : : : fP4; r3gK3;4
: : :gK1;3

gK2;3

: : : : : : : : :

2n� 1. Pn�1 ! Pn : fPn�1; fPn�2; : : : fP1; rngK1;n
: : :gKn�2;n

gKn�1;n

Note that Protocol 2 takes into account Lesson 1 by using the identi�ers

of the encrypting principal in each encrypted message as an explicit direction

label that prevents re
ection attacks. It does not, however, use Lesson 2,

because here principals do not translate messages encrypted with one key

for messages encrypted with another key.

5.3 Analysis and comparison

In order to better understand Protocol 1 and Protocol 2, and the di�erences

between them, we sketch how their main assumptions and achievements

could be formalized in a formal logic called SvO [11]. We analyze the three-

party protocols from the point of view of party A, but the same reasoning

applies for n-party protocols (n > 3) and the other parties as well.

The �rst question is: How can the goal of entity authentication be mod-

eled in the SvO logic? We recall that entity authentication means that a

party, say A, is convinced that another party, say B, was alive and sent

some messages in a bounded time interval in the local time of A. In the

SvO logic, the following formula can represent this:

A believes (B says X)

23

where X is some message or a part of a message (typically some function of

a fresh nonce generated by A).

Now, let us investigate how such a formula can be derived for Protocol 1.

The last message that A receives in Protocol 1 is message 3. Only the

encrypted part is interesting for A, which we idealize as:

fC; rb; B; ra; (B said ra)gKac

Using the assumption that A believes that Kac is a good shared secret key

between A and B, we can easily derive that

A believes (C said (C; rb; B; ra; (B said ra)))

Since A believes that its own random number ra is fresh, A believes that

the message received from C is fresh. This allows us to derive that

A believes (C says (C; rb; B; ra; (B said ra)))

from which we can easily get that

A believes (C says ra) (1)

and

A believes (C says (B said ra)) (2)

(1) means that A authenticated C. In order to go further and derive that

A authenticated B as well, the following must hold:

A believes (C controls (B said ra)) (3)

Then, from (2) and (3) we can derive that

A believes (B said ra)

Since we assumed that A believes that its own random number ra is fresh,

we get that

A believes (B says ra)

This means that A authenticated B.

Note, however, that (3) cannot be derived from the protocol, thus, we

must make the assumption that it holds. Indeed, (3) models A's trust in

24

C for correctly attributing messages to B and for correctly forwarding the

content of these messages to A.

Now, we turn our attention to Protocol 2. The last message received

by A is again message 3. Only the last encrypted part is interesting for A,

which we idealize in the following way:

fC; fB; ragKab
gKac

Assuming that A believes that Kab andKac are good shared secrets between

A and B, and between A and C, respectively, we can derive that

A believes (C said fB; ragKab
) (4)

and

A believes (B said ra) (5)

Since A believes that its own random number ra is fresh, we can easily derive

in the SvO logic that A believes that fB; ragKab
is fresh as well. Thus, from

(4) we get that

A believes (C says fB; ragKab
)

and from (5) we get that

A believes (B says ra)

This means that A authenticated both B and C.

Note that, although Protocol 1 and Protocol 2 achieve the same goal,

unlike Protocol 1, Protocol 2 does not need any assumptions about existing

trust between the parties.

6 Conclusion

In this paper, we addressed the problem of multi-party entity authentication.

We proved that the lower bound on the number of messages of multi-party

challenge-response protocols for entity authentication is 2n � 1, where n

is the number of the parties participating in the protocol. Our proof is

based on modeling the protocol with a directed graph, the vertices of which

correspond to the parties, and the edges of which correspond to the messages

of the protocol, and de�ning a partial ordering on the edges according to

25

the timing of messages in the protocol. Besides allowing us to prove the

lower bound on the number of messages, this model proved to be helpful in

understanding some interesting structural properties of challenge-response

type entity authentication protocols.

We presented two protocols that are eÆcient in the sense that they use

the minimum number of messages required to solve the multi-party entity

authentication problem based on challenge-response principles (i.e., they

achieve the lower bound on the number of messages). The protocols have

the same message passing structure, but they di�er in the assumptions about

trust among the parties, and thus, in the content (semantics) of the mes-

sages. We analyzed and compared our protocols with the help of the SvO

authentication protocol logic. We note that our protocols can easily be

extended to server assisted entity authentication and session key establish-

ment, which we did not discuss in this paper due to space limitations.

Finally, we should note that, in this paper, we were mainly concerned

with minimizing the number of messages in challenge-response protocols for

entity authentication. On the one hand, this makes sense, because each mes-

sage sent involves the use of several lower level protocols down in the commu-

nication protocol stack, and thus, produces some overhead. By minimizing

the number of messages of the authentication protocol, we can minimize

this overhead. On the other hand, minimizing the number of messages does

not necessarily minimizes the required bandwidth. If the protocol uses few

messages, but these are long, then we do not gain much in bandwidth, and

a protocol with more but smaller messages might be more desirable. Thus,

in general, we are facing a more complex optimization problem, in which

both the number of messages and the total amount of data exchanged in

the protocol must be taken into consideration. We leave this issue for future

study.

References

[1] M. Abadi and R. Needham. Prudent engineering practice for cryp-

tographic protocols. In Proceedings of the IEEE CS Symposium on

Research in Security and Privacy, pages 122{136, 1994.

[2] R. Anderson and R. Needham. Robustness principles for public key

protocols. In Advances in Cryptology { CRYPTO'95, pages 236{247,

1995.

26

[3] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and

M. Yung. Systematic design of a family of attack-resistant authenti-

cation protocols. IEEE Journal on Selected Areas in Communications,

11(5):679-693, 1992.

[4] M. Burrows, M. Abadi, and R. Needham. A logic of authentication.

ACM Transactions on Computer Systems, 8(1):18{36, February 1990.

[5] J. Clark and J. Jacob. A survey of authentication protocol literature.

http://www-users.cs.york.ac.uk/~ jac/papers/drareview.ps.gz

[6] L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in

cryptographic protocols. In Proceedings of the IEEE CS Symposium on

Research in Security and Privacy, pages 234{248, 1990.

[7] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1997.

[8] J. Millen, S. Clark, and S. Freedman. The Interrogator: Protocol

security analysis. IEEE Transactions on Software Engineering, SE-

13(2):274{288, February 1987.

[9] C. Mitchell. Limitations of challenge-response entity authentication.

IEE Electronics Letters, 25(17), 1989.

[10] A. Mitropoulos and H. Meijer. Zero knowledge proofs { a survey. Tech-

nical Report No. 90-IR-05, Queen's University at Kingston, Kingston,

Ontario, Canada, 1990.

[11] P. Syverson and P. van Oorschot. On unifying some cryptographic

protocol logics. In Proceedings of the IEEE CS Symposium on Research

in Security and Privacy, pages 14{28, 1994.

[12] T. Woo and S. Lam. Authentication for distributed systems. Computer,

25(1):39{52, January 1992.

27

