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Abstract

We address the problem of pollution attacks in coding
based distributed storage systems proposed for wireless
sensor networks. In a pollution attack, the adversary ma-
liciously alters some of the stored encoded packets, which
results in the incorrect decoding of a large part of the orig-
inal data upon retrieval. We propose algorithms to detect
and recover from such attacks. In contrast to existing ap-
proaches to solve this problem, our approach is not based
on adding cryptographic checksums or signatures to the en-
coded packets. We believe that our proposed algorithms are
suitable in practical systems.

1 Introduction

In many wireless sensor network (WSN) applications,
there are multiple, distributed sources that generate datathat
must be stored efficiently in multiple storage nodes, each
having constrained communication, computation, and stor-
age capabilities. Using the principles of network coding
[1, 6, 8, 13] and storing encoded data instead of raw data
can help to increase the efficiency of the system. Suppose
we havek source nodes andn storage nodes. Instead of
storing raw data packets, each storage node stores a linear
combination of a subset of thek data packets. The ran-
dom coding techniques (distributed erasure codes, fountain
codes) introduced in [2, 3, 4, 5] ensure that, for appropri-
ately selected parameters, a collector node can reconstruct
all thek data packets with high probability by downloading
the encoded packets fromany k storage nodes and solving a
system of linear equations (s.l.e.). Thus, the collector node
can retrieve the interested data fromk nearby nodes, which
results in decreased energy consumption, and hence, longer
network lifetime. Note that these are primary design criteria
in WSNs.

While coding may increase the efficiency of distributed
storage systems in a benign environment, it has a poten-
tial problem in hostile environments, where an adversary

may attack the storage nodes. In particular, the problem
that we are interested in in this paper is the so calledpol-
lution attack, whereby the adversary modifies some of the
stored encoded data, which results in erroneous decoding
of a large part of the original data upon retrieval. Note that
coding schemes mix (typically, linearly combine) blocks
of the original data, therefore, a single corrupted encoded
block can affect the decoding of multiple data blocks. This
amplification effect of the pollution attack is particularly an-
noying and undesirable.

The latest important result for correcting errors intro-
duced by a Byzantine adversary in network coding based
communication systems is presented in [10]. In that paper,
the authors introduce an information-theoretically rate opti-
mal code. The packets from the adversarial nodes are intu-
itively considered as packets coming from a second source,
and the packets arriving at the destination are linear combi-
nations of the source’s batch of packets and the adversary’s
batch of packets. Compared to that work, the model we
have apopted is different, because we assumek indepen-
dent sources each producing one packet (per time epoch).
In addition, we do not assume any encoding of packets at
the source nodes.

Cryptographic techniques have also been proposed to de-
tect attacks in coding based communication and storage sys-
tems. An approach to prevent the pollution attack is to re-
quire the source nodes to digitally sign [11] (or hash [9]) the
data blocks before they are injected in the system. The dig-
ital signature scheme must have some homomorphic prop-
erties, similar to the case of homomorphic hash functions.
Recently, a homomorphic digital signature scheme has been
proposed for network coding based content distribution in
[12] based on an elliptic curve.

Unfortunately, homomorphic signature schemes are
computationally expensive, and they need a public key in-
frastructure (PKI) for the management of the signature veri-
fication keys. These problems hinder their usage in practical
applications; in particular, due to the large computational
complexity they cannot be used in sensor networks.

Our main contribution in this paper is a novel non-



cryptographic approach to counteract pollution attacks in
coding based distributed storage systems in WSNs. Com-
pared to other approaches in the same vein, we do not add
redundancy to the data packets, but rather, we take advan-
tage of the inherent redundancy provided by the coding
scheme itself. This redundancy comes from the fact that
the content of each storage node corresponds to the same
data block vector. To the best of our knowledge, our pro-
posal is the first error detection/correction method that does
not require any new functionality at the source nodes or at
the storage nodes.

We believe that our proposal is much more practical
than the approach based on homomorphic digital signatures.
First of all, we need neither a PKI, nor any cryptographic
key management scheme, as we do not use cryptography at
all. The practical value of this feature should not be under-
estimated. Second, while our approach also requires inten-
sive computational effort, this is required only for the entity
that retrieves information from the distributed storage sys-
tem. In wireless sensor networks, where the computational
overhead really matters, this entity is typically the base sta-
tion, which is usually assumed to be powerful enough. In
contrast to this, in the approach based on homomorphic dig-
ital signatures, the source nodes and the storage nodes need
to perform intensive computation, and those are typically
resource constrained sensor nodes.

The remainder of the paper is organized as follows: In
Section 2, we introduce the system model and the adver-
sary model. In Section 3, we describe our proposed attack
detection algorithm, together with the analysis of its error
probability and complexity. In Section 4, a recovery algo-
rithm is proposed and analyzed. Finally, in Section 5, we
draw some conclusions.

2 Model

System model: The general model of the distributed stor-
age systems that we consider in this paper is taken from [3].
The system consists ofk source nodes,n storage nodes, and
one or more collector nodes. Note that these are roles, and
therefore, the sets of source nodes, storage nodes, and col-
lector nodes may overlap.

Each source nodei generates a data blockXi, and trans-
fers it to some randomly selected subset of the storage
nodes. Each storage nodej computes a random linear com-
bination of all the data blocks that it receives; the result is
a single code blockYj . Formally, we can write thatYj =
XGj, whereX = (X1, X2, . . . , Xk) is the row vector of all
the data blocks, andGj = (g1j , g2j, . . . , gkj)

T is a column
vector, the non-zero elements of which are the random coef-
ficients used in the linear combination. Here,gij ∈ GF (q)
for all i = 1, 2, . . . , k andj = 1, 2, . . . , n, and for someq.
Each storage nodej stores the pairZj = (Gj , Yj), which

represents the equationYj = XGj.
The entire system is represented by the system of

linear equations (s.l.e.) Y = XG, where Y =
(Y1, Y2, . . . , Yn) is the row vector of all code blocks, and
G = (G1, G2, . . . , Gn) is ak × n matrix that contains the
coefficient vectors in its columns. MatrixG is also called
generator matrix. For appropriately selected values ofk and
q, anyk×k submatrix ofG is non-singular with high prob-
ability (see e.g., Theorems 1 and 2 in [3]), therefore, the
collector node can reconstruct all the data blocks with high
probability by downloading the equations from anyk stor-
age nodes and solving the obtained s.l.e. forX . In the rest
of the paper, we assume that this property ofG holds.

In fact, each data blockXi can itself be a column vector
of m symbols(x1i, x2i, . . . , xmi)

T, wherexℓi ∈ GF (q) for
all i = 1, 2, . . . , k andℓ = 1, 2, . . . , m. In that case, each
code blockYj is also a column vector(y1j , y2j , . . . , ymj)

T

of m symbols inGF (q). The linear combinationYj =
XGj is computed in a symbol-by-symbol manner, mean-
ing that yℓj =

∑k

i=1 xℓigij for all j = 1, 2, . . . , n and
ℓ = 1, 2, . . .m. Thus, one can think ofX andY in the s.l.e.
Y = XG as matrices of sizem×k andm×n, respectively.

Adversary model: We assume that the adversary has ac-
cess tot storage nodes, and she can observe and modify
the equations stored by them. This means that if the ad-
versary has access to storage nodej, then she can modify
bothGj andYj stored by nodej. Let G∗ = G + ∆G and
Y ∗ = Y + ∆Y be the modified generator matrix and the
modified code block vector after an attack, where the modi-
fications made by the adversary are contained in matrix∆G
and vector∆Y . We assume that the adversary modifies the
content of each compromised node independently.

Note that the adversary has no access to the source
nodes, neither she can attack the communication between
the source nodes and the storage nodes. This assumption
is plausible, because storage nodes are exposed to attacks
for an extended period of time, whereas the source nodes,
and the communication between them and the storage nodes
must be attacked during the limited time period of data gen-
eration and distribution.

The adversary has no information about whichk stor-
age nodes will be chosen by the collector node for re-
construction, neither has the collector node information
about which storage nodes are compromised. In the se-
quel, we will assume without loss of generality that the ad-
versary randomly chooses thet storage nodes to be com-
promised, and the collector node downloads the equations
of the first k storage nodes, where the order of the stor-
age nodes is defined randomly by the collector node. Thus,
the set of equations downloaded by the collector node is
Z∗

1..k = (G∗

1..k, Y ∗

1..k), whereG∗

1..k = (G∗

1, G
∗

2, . . . , G
∗

k)
andY ∗

1..k = (Y ∗

1 , Y ∗

2 , . . . , Y ∗

k ).



Let us now investigate the effect of an attack. The collec-
tor node solves the s.l.e.Y ∗

1..k = XG∗

1..k for X , and obtains
the resultX∗ = Y ∗

1..k(G∗

1..k)−1. The modification induced
by the attack in the decoded data blocks can be computed
as follows:

X + ∆X = (Y1..k + ∆Y1..k)(G∗

1..k)−1

(X + ∆X)G∗

1..k = Y1..k + ∆Y1..k

X∆G1..k + ∆XG∗

1..k = ∆Y1..k

∆X = (∆Y1..k − X∆G1..k)(G∗

1..k)−1

where in the second step we used thatG∗

1..k = G1..k +
∆G1..k andXG1..k = Y1..k. If at least one of the firstk
coefficient vectors has been modified by the adversary, then
G∗

1..k 6= G1..k, and thus,(G∗

1..k)−1 can be completely dif-
ferent from(G1..k)−1. Therefore, in general, such a modifi-
cation affects all decoded data blocks in every row. Even if
the adversary modifies code blocks only and all coefficient
vectors are intact (G∗ = G), all decoded data blocks are
affected, however the effect is limited to the rows ofX that
correspond to a nonzero row in∆Y .

These observations illustrate the amplification effect of
the pollution attack: a small amount of modifications in the
stored coded information can result in a large amount of
modifications in the decoded data. In the worst case all data
blocks are entirely destroyed. Below, we address this prob-
lem by proposing mechanisms to detect and recover from
such attacks.

3 Attack detection

Principle: The basic idea of our attack detection mecha-
nism is the following: We observe that it is very unlikely
that the adversary will compromise all the firstk equations.
Indeed, the probability of this event is around(t/n)k. Thus,
some parts ofY ∗

1..k andG∗

1..k are not controlled by the ad-
versary, and for this reason, she cannot enforce a particular
solutionX∗ = Y ∗

1..k(G∗

1..k)−1. Indeed,X∗ will be a ran-
dom vector in most of the cases, except if all the firstk
equations are intact, in which caseX∗ = X will hold.

Now, suppose that we have an additional intact equation:
Yk+1 = XGk+1 (i.e., the collector downloadedZk+1 =
(Gk+1, Yk+1)). If X∗ is random, then it will not satisfy
the additional intact equation with high probability, while it
will satisfy it with probability 1 if X∗ = X . Thus, we can
detect if the decoded data block vectorX∗ is polluted with
the help of an additional intact equation.

Algorithm: The proposed attack detection algorithm
works in the following way: The collector downloads the
first k equationsZ∗

1..k and computesX∗ = Y ∗

1..k(G∗

1..k)−1.
Then, the collector downloads the next equationZ∗

k+1. If

Y ∗

k+1 = X∗G∗

k+1, then no attack is detected (and the col-
lector acceptsX∗ as the correct solution). Otherwise, if
Y ∗

k+1 6= X∗G∗

k+1, an attack is signalled.

Complexity: We measure the communication complex-
ity in the number of downloaded equations and the compu-
tational complexity in the number of s.l.e.’s that we need
to solve. Thus, the communication complexity of the pro-
posed attack detection algorithm isk + 1, and its computa-
tional complexity is1. As the collector needs to download
k equations and solve one s.l.e. in any case, the incurred
communication overhead of the attack detection is the the-
oretical minimum: 1 more equation to download.

Probability of a false negative decision: Let us assume
for the moment that the adversary does not modify the co-
efficient vectors, meaning thatG∗ = G. In this case, the
collector obtains the solutionX∗ = X + ∆Y1..kG−1

1..k =
X + ∆X .

If we further assume that the additional equation that we
use for detection is intact, then we haveZ∗

k+1 = Zk+1 =
(Gk+1, Yk+1). In this case, the false negative error proba-
bility, denoted byPfneg , can be computed as follows:

Pfneg = Pr{Yk+1 = X∗Gk+1|∆Y1..k 6= 0}

= Pr{Yk+1 = (X + ∆X)Gk+1|∆Y1..k 6= 0}

= Pr{∆XGk+1 = 0|∆Y1..k 6= 0} (1)

where in the last step we used thatYk+1 = XGk+1.
If ∆Y1..k has a non-zero element in thei-th row (and

G1..k is intact), then∆X also has some non-zero elements
in thei-th row. Otherwise, if thei-th row of∆Y1..k contains
only zeros, then thei-th row of∆X contains only zeros too.

We can write thei-th element of∆XGk+1 as

k
∑

ℓ=1

∆xiℓgℓ(k+1) (2)

By the argument above, (2) is a non-trivial linear combi-
nation of the elements ofGk+1. However, the elements of
Gk+1 are chosen randomly, therefore, the probability of (2)
being 0 is equal to1/q.

>From this, it follows that

Pfneg =
1

qt′
(3)

wheret′ is the number of rows in∆Y1..k that contain non-
zero elements. Clearly, in order to maximize the error prob-
ability (and hence minimize the success probability) of the
detection, the adversary must make all modifications to the
code blocks in a single row1.

1Note that if the code blocks contain standard error detection elements,
such as a CRC checksum, then at least 2 rows must be changed by the
adversary in every attacked code block. Consequently, in that case, we
have thatPfneg ≤ 1/q2.



Next, we keep the assumption that the adversary does
not modify the coefficient vectors (henceG∗ = G), but
we assume that the code block of the additional equation
that we use for detection is attacked, meaning thatZ∗

k+1 =
(Gk+1, Y

∗

k+1) = (Gk+1, Yk+1 + ∆Yk+1). In this case, a
simple derivation similar to the previous case can be used
to arrive to the following result:

Pfneg = Pr{∆XGk+1 = ∆Yk+1|∆Y1..k 6= 0} (4)

Note that thei-th row of ∆X contains only zeros if thei-
th row of ∆Y1..k contains only zeros. In this case, thei-th
element of∆XGk+1 must be a zero too. Thus, if thei-th
element in∆Yk+1 is not zero, then the above error prob-
ability is 0 (i.e., we can detect the attack even though the
additional equation used for detection is not intact). On the
other hand, if∆Yk+1 contains zeros in every row where
∆Y1..k contains only zeros, then due to the randomness of
Gk+1, we get again thatPfneg = 1/qt′ , wheret′ is the num-
ber of rows in∆Y1..k that contain non-zero elements.

Finally, let us consider the general case when the ad-
versary may modify both the coefficient vectors and the
code blocks, hence∆G 6= 0 and∆Y 6= 0. Recall that
if ∆G1..k 6= 0, then the solutionX∗ = Y ∗

1..k(G∗

1..k)−1 ob-
tained from the firstk equations is a random vector. It fol-
lows that the equationY ∗

k+1 = X∗G∗

k+1 holds with proba-
bility around1/qm, and thus

Pfneg = Pr{Y ∗

k+1 = X∗G∗

k+1|∆G1..k 6= 0} ≈
1

qm
(5)

The conclusion of this analysis is that the probability
Pfneg of false negative detection is maximized if the adver-
sary makes modifications only in a single row of the code
block matrixY and leaves the coefficient matrixG intact.
In this case,Pfneg = 1/q. Hence, ifq is chosen sufficiently
large (in the order of260), then the probability of not detect-
ing a pollution attack is negligible.

Probability of a false positive decision: Let us close this
section with the analysis of the probability of a false posi-
tive decision. A false positive decision may occur only if the
firstk equations downloaded by the collector node are intact
(Z∗

1..k = Z1..k) and the additional equation downloaded for
attack detection is not intact. From this, a good approxima-
tion of the probability of a false positive decision, denoted
by Pfpos , is the following:

Pfpos ≈ Pr{∆Zk+1 6= 0|∆Z1..k = 0} (6)

Given that the firstk equations are intact, the probability
that the(k + 1)-st equation is also intact is

(

n − k − 1
t

)

(

n − k
t

) =
n − k − t

n − k
(7)

wheret is the number of randomly chosen storage nodes
that are attacked by the adversary. From this, we get that

Pfpos = 1 −
n − k − t

n − k
=

t

n − k
(8)

While Pfpos is not negligible, false positive decisions
do not have serious effects. Indeed, when the attack de-
tection algorithm signals an attack, the recovery procedure
described in the next section is executed. This procedure
tries to recover the original data block vector, and as we will
see, it succeeds in a few steps when the number of attacked
equations is small.

4 Recovery from attack

Principle: When the collector node detects that the orig-
inally downloaded setS = Z∗

1..k of equations is polluted,
it can download more equations and use them toclean the
polluted setS. The basic idea of cleaning is the following:
Let us denote the set of equations downloaded for cleaning
by C, and lete be an additional equation. We use the equa-
tions inC to replace a subset of size≤ |C| of the equations
in S. We denote the resulting new set of equations byS′.
Then, we run our attack detection mechanism onS′ with
equatione used for testing. If no attack is detected, then we
accept the solution of the s.l.e. determined byS′ as the cor-
rect data block vector. Otherwise, we takeS again, replace
another subset of size≤ |C| of its equations, and run the
attack detection again. We repeat these steps until either the
cleaning succeeds or all possible replacements of subsets of
C have been tried.

In the rest of this section, we propose a specific recov-
ery algorithm based on the principle described above. As
we will see, the algorithm is optimal with respect to suc-
cess probability and communication complexity. However,
the price of this optimality is the increased computational
complexity. Nevertheless, the algorithm is still usable for
practical systems.

We also developed other approaches for recovery pur-
poses. We designed an algorithm that has improved compu-
tational complexity, but it has higher communication com-
plexity and it is prepared to clean at most a pre-defined num-
ber of attacked equations inS. Due to space limitations we
do not detail that algorithm here.

Algorithm: The basic idea of our algorithm is to start the
cleaning with a cleaning setC of size one (i.e., to assume
first that there is only one attacked equation in setS), and
then, if cleaning fails, to increase the size ofC iteratively.
In this way, sooner or later, we arrive to a cleaning setC that
contains as many intact equations as the number of attacked
equations inS. In each iteration, we select all possible sub-
sets of the equations inC and replace with them all possible



subsets of equations inS. Thus, eventually, we replace the
attacked equations with the intact ones, and arrive to a clean
set.

The operation of the algorithm is the following: The al-
gorithm first downloadsZ∗

1..k+1 and runs the attack detec-
tion algorithm onZ∗

1..k usingZ∗

k+1 as the testing equation.
If no attack is detected, thenZ∗

1..k is clean and the algo-
rithm stops. Otherwise, the algorithm starts the cleaning of
S = Z∗

1..k. This is an iterative process, where in each iter-
ation, exactly one new equation is downloaded. The newly
downloaded equation, denoted bye, becomes the testing
equation used for attack detection in the current iteration.
The rest of the equations downloaded so far, not counting
the equations inS, constitute the cleaning set denoted by
C. The algorithm takes every possible subsetC′ of C, such
that |C′| = τ is not greater thank, and uses the equations
in C′ to replaceτ equations inS in all possible ways. After
each replacement, the attack detection mechanism is exe-
cuted on the resulting setS′ of equations usinge as the test-
ing equation. If no attack is detected, thenS′ is clean and
the algorithm stops.

Success probability: It is easy to see that the algorithm
succeeds iff the numbert′ of the attacked equations in
S = Z∗

1..k is smaller than the number of the intact equa-
tions in the remaining setZ∗

k+1..n. On the one hand, if this
condition holds, then we have at leastt′ + 1 intact equa-
tions inZ∗

k+1..n, and therefore, as we continue downloading
more and more equations for cleaning, we eventually reach
a state where the cleaning setC contains at leastt′ intact
equations and the last downloaded equatione used for at-
tack detection is also intact. In this case, eventually, allthe
attacked equations inS will be replaced by intact equations
from C, henceS will be cleaned. In addition, ase is intact,
the attack detection mechanism will indicate no attack, and
we can actually realize thatS is cleaned.

On the other hand, ift′ is not smaller than the number of
the intact equations inZ∗

k+1..n, then either the cleaning set
C contains fewer thant′ intact equations, and hence,S can-
not be cleaned, orC contains exactlyt′ intact equations and
S can be cleaned, but we have no more intact equation for
attack detection purposes, and therefore, we cannot realize
thatS is cleaned.

Given that there aret attacked equations all together, and
t′ of them are inZ∗

1..k, we get that the number of intact equa-
tions inZ∗

k+1..n is (n− k)− (t− t′). Hence, the algorithm
succeeds ifft′ < (n−k)−(t−t′), or equivalently,t < n−k.
Thus, we get that

Psuccess =

{

1 if t < n − k
0 otherwise

(9)

Note that ift ≥ n − k then it is theoretically impossible
to recover from an attack, hence, our algorithm is optimal

with respect to success probability.

Communication complexity: Recall that we measure the
communication complexity in the number of the down-
loaded equations. As the algorithm downloads a new equa-
tion in every iteration, its communication complexity de-
pends on the number of the iterations it performs. More
precisely, if the algorithm performsR iterations, then its
communication complexity is(k+1)+R, because it down-
loadsk + 1 equations at the beginning before the iterative
phase is started. Ask is a fixed parameter, we are interested
in the characterization ofR.

The algorithm stops as soon as the following two condi-
tions hold: (a) the number of intact equations in the cleaning
setC is equal to the number of attacked equations inS, and
(b) the last downloaded equatione used for attack detection
is intact. Thus,R is the number of equations needed to be
downloaded to satisfy the two conditions above.

It must be clear that ifS containst′ attacked equations,
thenC ∪ {e} must contain at leastt′ + 1 intact equations,
as otherwise, we cannot cleanS and realize that it has been
cleaned at the same time. Thus,R is minimal in the sense
that forR′ < R downloaded equations,C ∪ {e} contains
fewer thant′ + 1 intact equations, and hence, the algorithm
cannot succeed. This means that our algorithm is optimal in
terms of communication complexity.

We give an estimation ofR in the following way. Let
p = t/n, and letW1 denote the number of equations that
need to be downloaded in order for the downloaded set
of equations to contain exactly the same number of intact
equations on average, as the number of attacked equations
in S. The average number of attacked equations in setS
is approximatelykp. The average number of intact equa-
tions among theW1 equations is approximatelyW1(1− p).
Hence, we get thatW1 ≈ kp/(1 − p). Furthermore, let
W2 denote the average number of equations that need to be
downloaded until we download an intact equation. Clearly,
W2 ≈ 1/(1−p). Thus, whenW1+W2 equations are down-
loaded, both conditions (a) and (b) are satisfied. In other
words, a good estimate ofR is R ≈ W1 + W2 ≈ kp+1

1−p

Computational complexity: Recall that we measure the
computational complexity in the number of s.l.e.’s that need
to be solved. In our case, each call to the attack detection
algorithm requires the solution of an s.l.e.

For the derivation of the average case computational
complexityPavg , we assume that the number of the attacked
equations inS is t′, where the average value oft′ is kt/n.
We make the following observations:

• All but the last iterations of the algorithm execute fully.
(term (10) in the sum below)



• In the last iteration, the loops that try to cleanS with
τ < t′ equations fromC also execute fully. (term (11)
in the sum below)

• When we useτ = t′ equations fromC for cleaning,
we have to process on average half of the possible se-
lections oft′ equations fromC until we end up with
the subset that contains thet′ intact equations ofC.
For all those selections, the inner loop executes fully
and we must process all the possible selections oft′

equations fromS. (term (12) in the sum below)

• Finally, when we select the subset ofC that contains
the t′ intact equations, we have to process on average
half of the possible selections oft′ equations fromS
until we end up with thet′ attacked equations ofS.
(term (13) in the sum below)

Thus, we get that

Pavg ≈

R−1
∑

w=1

min(w,k)
∑

τ=1

(

w
τ

) (

k
τ

)

+ (10)

t′−1
∑

τ=1

(

R
τ

) (

k
τ

)

+ (11)

1

2

(

R
t′

) (

k
t′

)

+ (12)

1

2

(

k
t′

)

(13)

Figure 1 shows the average computational complexity of
the recovery algorithm as a function of the numbert of at-
tacked equations. The different curves belong to different
values ofn andk, and the computation is based on the for-
mula given above. Note the logarithmic scale of they axis.
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Figure 1. Average computational complexity
of the recovery algorithm as a function of the
number t of attacked equations. The different
curves belong to different values of n and k.

As we noted before, the price of the optimality of the
success probability and the communication complexity is

the increased computational complexity. However, for prac-
tical system sizes ofk in the range of10 to 50 andn in
the range of100 to 500, our algorithm is still feasible in
terms of computational complexity. For instance, ifk = 50,
n = 500, andt = 55, then the computational complexity
is approximately2 · 108 ≈ 228, which is feasible. As an-
other example, considerk = 10 andn = 100. In this case,
successful recovery is ensured even if more than half of the
storage nodes are compromised (t = 55), with a computa-
tional effort of approximately4 · 106 ≈ 222.

Furthermore, note that the algorithm requires solving a
series of s.l.e.’s that differ only in a few equations. This
property can be exploited to accelerate the solution of the
s.l.e.’s. For details, we refer the reader to the Appendix.

Extension of the algorithm: In this paper we consid-
ered an attacker which compromises storage nodes inde-
pendently. The recovery algorithm can be extended to a
more general adversary while retaining its principles. Such
an adversary collects the content from all the compromised
nodes, processes the obtained information, and according to
the output of this processing she reloads the compromised
nodes. It is not hard to see that, in this case, the theoretical
limit for successful recovery from the attack ist < n/2.
This limit is achieved by our extended algorithm. Due to
space limitations here we give only the main idea of the ex-
tension. First, the presented recovery algorithm is executed.
The next step is a checking for consistency. If the output
of the execution (k output data blocks) is consistent with at
leastn/2 downloaded equations then we can be sure that
the output is not compromised. Otherwise, we drop all the
equations which are consistent with the output, and execute
the algorithm recursively over the remaining set of equa-
tions.

5 Conclusion

In this paper, we addressed the problem of pollution at-
tacks in coding based distributed storage schemes in WSNs,
and we proposed specific algorithms for detecting and re-
covering from such attacks. A salient feature of the pro-
posed algorithms is that they are not based on cryptographic
checksums or digital signatures, which are traditionally
used for providing integrity services. Instead, we take ad-
vantage of the inherent redundancy in such distributed stor-
age systems. In addition, our approach does not require the
storage nodes to perform additional coding on or to add ad-
ditional information to the encoded packets. Only the col-
lector node needs to perform a substantial amount of com-
putation. For this reason, we believe that our approach is
particularly suitable for wireless sensor networks, wherethe
storage nodes are energy constrained sensors, while the col-
lector is a powerful base station. Detailed comparison with



cryptographic approaches is part of our future work.
While we presented our approach in the context of

WSNs, it is, in fact, general, and can be applied in any cod-
ing based distributed storage systems, in particular, in the
domain of P2P file distribution [7].
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Appendix: During the recovery algorithm a large number
of s.l.e.’s must be solved, hence the efficiency of the ap-
plied algorithm effects the computational time of the recov-
ery from an attack. We propose a method for accelerating
this step. Note that our algorithm replaces a subset of the
original setS of linear equations, thus when the size of the
substituted set is much smaller than|S|, the majority of the
equations does not change. We take advantage of this fact.

With setS of the original equations we haveX∗G∗

1..k =
Y ∗

1..k. Let us construct the QR decomposition ofG∗

1..k.
QGRG = G∗

1..k, whereQG is orthogonal andRG is tri-
angular. Now we haveX∗QGRG = Y ∗

1..k. Solve this s.l.e.
for X∗QG. As a result of the triangular property ofRG,
solving this s.l.e. with back substitution is much more ef-
fective than solving a general s.l.e., that requires matrixin-
version. By multiplying the result withQ−1

G = QT

G, we
get X∗. When solving the original s.l.e., we perform the
costly operation of QR decomposition, but hereafter solv-
ing an additional s.l.e. requires only the back substitution
after some simple additional computing. This can be done
in the following way.

Let us first consider only one equation to replace. As-
sume we replace thei-th equation withX ′

iG
′

i = Y ′

i . Now
we have(X∗)′QGR′

G = (Y ∗

1..k)′. We getR′

G by replacing
the i-th column ofRG with QT

GX ′

i, (X∗)′ equalsX∗ with
its i-th element replaced withX ′

i and similarly(Y ∗

1..k)′ is
the same asY ∗

1..k with its i-th element replaced withY ′

i .
We solve this s.l.e. with back substitution to get(X∗)′QG.
This can be done after correcting the triangular property of
R′

G. In R′

G only the replaced column interferes this prop-
erty. By performing a single step of the Gaussian elimina-
tion on that column, we get a triangular matrix and can run
the back substitution algorithm. Here an additional multi-
plication results(X∗)′QGQT

G = (X∗)′, that is the solution
of the modified s.l.e.

If c > 1 equations are replaced, that meansc replaced
column inRG, andc steps to perform the Gaussian elim-
ination. The whole method requiresc + 1 vector-matrix
multiplication,c steps of the Gaussian elimination and per-
forming the back substitution algorithm. The overall cost
(O(k2)) is lower than the cost of a matrix inversion (O(k3)).

The performance of the recovery algorithm can be fur-
ther improved approximately by a factor of 2, if the solu-
tions of all the solved s.l.e.’s can be stored.


