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Abstract 
In typical sensor network applications, the sensors are left unattended for a long period of time. In 
addition, due to cost reasons, sensor nodes are usually not tamper resistant. Consequently, sensors 
can be easily captured and compromised by an adversary. Once compromised, a sensor can send 
authentique messages to other nodes and to the base station, but those messages may contain 
arbitrary data created by the adversray (e.g., bogus measurments). A similar effect can be achieved 
by manipulating the physical environment of uncompromised sensors so that they measure false 
values. Bogus data introduced by the adversary may considerably distort the output of the 
aggregation function at the base station, and may lead to wrong decisions. The goal of resilient  
aggregation is to perform the aggregation correctly despite the possibility of the above mentioned 
attacks.  
In this paper, we give an overview of the state-of-the-art in resilient aggregation in sensor 
networks, and briefly summarize the relevant techniques in the field of mathematical statistics. In 
addition, we introduce a particular approach for resilient aggregation in more details. This 
approach is based on RANSAC (RAndom SAmple Consensus), which we adopted for our 
purposes. We also present some initial simulation results showing that our RANSAC based 
approach can tolerate a high percentage of compromised nodes.  

 
 
1   Introduction 
 
Sensor networks are distributed systems, consisting of hundreds or thousands of tiny, low-cost, 
low-power sensor nodes and one (or a few) more powerful base station(s). These networks are 
designed to interact with the physical environment.  Typically, sensors measure some physical 
phenomena (e.g., temperature and humidity) and send their measurements to the base station 
using wireless communications. The base station performs data processing functions and 
provides gateway services to other networks (e.g., the Internet).  
 
Sensor nodes are able to transmit messages only within a short communication range, therefore, it 
is envisioned that the sensors form a multi-hop network in which the nodes forward messages on 
behalf of other nodes toward the base station. The typical toplogy of a sensor network is a tree 
with the base station at the root (see Figure x.1 for illustration). In order to reduce the total 
number of messages sent by the sensors, in-network processing may be employed, whereby some 
sensor nodes perform data aggregation functions. Aggregator nodes collect data from 
surrounding sensors, process the collected data locally, and transmit only a single, aggregated 
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message toward the base station. Finally, the base station computes a single aggregated value 
(e.g., average, minimum, or maximum) from the data received from the network. 
 
After deployment, sensors are typically left unattended for a long period of time. In order to keep 
their cost acceptable, common sensor nodes are not tamper resistant. This means that they can be 
captured and compromised at a reasonable cost. Therefore, we cannot assume that common 
sensors attacked by a determined adversary are able to protect any secret cryptographique 
elements (e.g., secret keys). Once a sensor is compromised, it can send authentique messages to 
other nodes and to the base station, but those messages may contain arbitrary data created by the 
adversray (e.g., bogus measurments). 
 
Note that even if we assumed that the adversary is less powerful or that the nodes are tamper 
resistant, the adversary can still perform input based attacks, meaning that it can directly 
manipulate the physical environment monitored by some of the sensors, and in this way, it can 
distort their measurements and the output of the aggregation mechanism at the base station.  
 
In this paper, we will focus on this problem. More precisely, we assume that a small fraction of 
the sensor nodes are compromised (or their input is directly manipulated) by an adversary. In 
general, we do not make assumptions about how the compromised nodes behave (i.e., Byzantine 
fault model is assumed). We do assume, however, that the objective of the attacker is to 
maximally distort the aggregated value computed by the base station, while at the same time, the 
adversary does not want to be discovered (stealthy attack). 
 

Base station 
Aggregator node 
Sensor node 

 
Fig. x.1. Sensor network architecture 

 
The adversary may not limit its attack to simple sensor nodes, but it may try to compromise 
aggregator nodes too. Aggregator nodes are, obviously, more valuable targets for attack. The 
reason is that via gaining control over such nodes, the adversary might manipulate the aggregated 
data collected from a larger set of common sensors. Therefore, we cannot assume that 
aggregation points are trustworthy. We will assume, however, that the base stations cannot be 
compromised, and they always behave correctly, since there are only a few of them, they can be 
placed in a protected environment, and they can be monitored continuously.  
 



The use of wireless communication channels means additional vulnerabilities. For instance, data 
can be easily eavesdropped or disrupted by jamming. Jamming may lead to temporary link 
failures, which may be viewed as a kind of Denial of Service (DoS) attack. We note, however, 
that in general, the adversary can be assumed to be more or less aware of the data measured in the 
network. Consequently, its primary goal may not be eavesdropping, but instead, it wants to 
modify the data delivered to the base station. Similarly, we can assume that it is more valuable 
for an adversary to manipulate the data collected from a given part of the network, than 
completely eliminate the corresponding subset of data via applying DoS attacks. On the other 
hand, if degradation of the communication graph endangers the fulfillment of the mission of the 
network, then techniques ensuring reliable communications (e.g., redundant paths, diversification 
techniques) must also be applied.   
 
While cryptographique techniques (e.g., message integrity protection) and reliability methods 
(e.g., path diversification) are also important defense measures for resilient aggregation, in this 
paper, we put our emphasis on statistical approaches to detect deliberate attacks stemming from 
the insertion of bogus data by compromised sensors or by the manipulation of the physical 
environment of some uncompromised sensors. Note that such attacks simply cannot be detected 
by cryptographique techniques, that is why we need statistical methods, such as extreme value 
detection and robust statistics. These approaches help to detect and eliminate unusual, strange 
data values from the pool of data before the aggregation is performed, or they can considerably 
suppress the effect of bogus data on the aggregated value. The strength of these methods depends 
on the accuracy of the statistical model assumed for the data as statistical sample, and the 
accuracy of our assumptions about the capabilities of the adversary (e.g., the percentage of the 
compromised sensors and/or aggregators).  
 
The rest of the paper is organized as follows: In Section 2, we give an overview of the state-of-
the-art in resilient aggregation in sensor networks. In Section 3, we summarize the main results of 
outlier tests and robust statistics; these tools can be used to design data aggregation schemes that 
are resilient to attacks stemming from the insertion of bogus data by compromised sensors or by 
the manipulation of the physical environment of some uncompromised sensors. In Section 4, we 
give a detailed example of a statistical approach to resilient data aggregation. This example is 
based on an approach called RAndom SAmple Consensus (RANSAC). We also present some 
simulation results that show the efficiency of the RANSAC approach. 
 
2   State-of-the-art 
 
Resilient aggregation is a recent topic in the world of sensor networks; that is why the list of 
related papers is relatively short. In this section, we give an overview of these related papers. We 
begin, in Subsection 2.1, with some proposed data aggregation schemes that are resilient to node 
and/or link failures.  As we mentioned before, such failures can be the result of jamming attacks, 
therefore, these schemes can be viewed as data aggregation algorithms that would work in the 
presence of a jamming adversary. Then, in Subsection 2.2, we give an overview of those papers 
that assume an adversary that can compromise aggregator nodes in the network and modify the 
data that they pass on toward the base station. As we will see, such attacks can be detected by 
appropriate cryptographique techniques. Finally, in Subsection 2.3, we deal with papers that 
address the problem of input based attacks and bogus data introduced by compromised sensors. 
The countermesaures for this latter class of attack are based on statistical approaches. 



 
2.1  Data aggregation in case of node or link failures 
 
Shrivastava et al. present a new approach for computing complicated statistics like the histogram 
of the sensor readings (Shrivastava et al. 2004). The topology of the sensor networks here is 
assumed to be a typical tree structure, where each intermediary node performs aggregation (i.e., 
compression). No attacker is assumed and even no link failures are considered. 
 
Each sensor maintains a q-digest which comprises the summary of data measured by it. A q-
digest is a binary tree built on the value space in the following way. The leaf nodes represent 
buckets corresponding to optionally overlapping intervals of the value space and store the count 
of readings that came from the corresponding interval. At the beginning, the intermediary nodes 
do not store any counts, they are needed for later processing. Note, that here the term ’node’ is 
not corresponding to a sensor, but reflects to an egde in the graph of the q-digest.  
 
To construct a memory-effective q-digest we need to hierarchically merge and reduce the number 
of buckets. This means going through all nodes bottom-up and checking if any node violates the 
digest property, which declares that none of the nodes should have a high count (this is needed to 
prove error bounds on the q-digest) and no parents-children triple should have low count. (The 
upper and the lower bounds for this count are determined by a compression parameter k.) This 
latter property is responsible for the compression, because if two sibling buckets have low counts 
then we do not want to have two separate counters for them. They will be merged into its parent 
and the empty buckets will be deleted. Doing this recursively bottom-up in the q-digest, we 
archieve a degree of compression. This emphasizes a key feature of q-digest: detailed information 
concerning data values which occur frequently are preserved in the digest, while less frequently 
occuring values are lumped into larger buckets resulting in compression, but also in information 
loss. This technique will always produce only an approximate result, but it is aware of the limited 
memory of the sensors. 
 
Q-digests can be constructed in a distributed fashion too, that makes them available for 
calculating aggregates in sensor networks. If two sensors send their q-digests to their parent 
sensor (i.e., parent in the rooting tree), it can merge the received q-digests together and add its 
own q-digest to produce a common q-digest. The idea in merging of two q-digests is to take the 
union of the two q-digests and then run the above described compression algorithm on the union 
q-digest. 
 
Q-digests are best deployable at such queries, where the output of the query can be represented 
with a single node - the error derived by the compression becomes minimal in this case. Such 
queries are the quantiles or specially the median. By a given memory m, the error of a quantile 
query can be upper bounded by m)log(3 σ , where σ  stands for the size of the value space 
which is assumed to be [ ]σ…1 . However, other queries can be executed with the help of q-
digests too (like inverse quantile, range query, consensus query or histogram), but their included 
error will possibly grow above this limit. 
 
Chen et al. propose a method to calculate a statistic in a distributed fashion (Chen et al. 2005). 
The sensor network is abstracted as a connected undirected graph, where the sensor nodes are the 



vertices and the bi-directional wireless communication links are the edges. This underlying graph 
can be of any kind depending on the placement of the sensor nodes. The paper does not consider 
attackers, but handles link failures. 
 
The method proposed in (Chen et al. 2005) is called Distributed Random Grouping (DRG), and it 
can be used to calculate the average or the min/max of the sensor readings in a distributed 
fashion. The main idea of DRG is to randomly generate groups of nodes which locally 
synchronize their aggregate values to the common aggregate value of the group. Sooner or later 
this leads to a global consensus about the aggregate value in the sensor network. The detailed 
algorithm can be described as consecutive steps in a round: In the first step, each node in idle 
mode independently originates to form a group and become the group leader with probability p. 
A node i which decides to be the group leader enters the leader mode and broadcasts a group call 
message containing its id (i.e., i). After this, it waits for the response of its neighbours. In the 
second step, a neighbouring node j, at the idle mode that successfully received the group call 
message, responds to the group leader i with a joining acknowledgement containing its reading vj. 
Node j then enters to member mode and waits for the group assignment message from group 
leader i. In the third step of the algorithm the group leader i gathers the received joining 
acknowledgements and computes the number of the group members and the desired statistic on 
the readings (e.g., the average). Then it broadcasts the group assignment message comprising the 
calculated statistic and returns to idle mode. The neighbouring nodes at member mode of group i 
which receive the assignment message, update their value to the received one and return to idle 
mode. 
 
Although this algorithm is natural, it is not straightforward to give bounds on the running time 
(i.e., the number of rounds needed until the whole network owns roughly the same value for the 
desired statistic). The authors assumed that the nodes run DRG in synchronous rounds to evaluate 
the performance of the algorithm. Based on theoretical calculations, they succeed to upper bound 
the number of rounds needed as a function of the properties of the graph, the grouping 
probability, the desired accuracy and the grand variance of the initial value distribution. An other 
way of evaluation was the simulation of the algorithm on hyphotetical sensor networks deployed 
according to Poisson random geometric graphs. The authors also compared DRG with known 
distributed localized algorithms, like the Flooding algorithm and the Uniform Gossip algorithm. 
In each comparison scenario, the DRG outperformed these two algorithms in the total number of 
transmissions, which is closely related to the energy consumption of the sensor network. 
 
2.2  Attacking the aggregators, cryptographique countermeasures 
 
In (Anand et al. 2005), Anand et al. consider an eavesdropping attacker who wants to eavesdrop 
the network-wide aggregatum. The topology is the same as in (Shrivastava et al. 2004), each 
sensor senses and aggregates (except the leaf nodes, they have no aggregation task). 
 
The adversary has the capability only for eavesdropping the communication between some sensor 
nodes. The goal of the adversary is to determine the aggregatum as precisely as possible. Two 
types of eavesdropping attacks are distinguished in the paper. There are passive eavesdroppers 
(who only listens to the broadcast medium) and active eavesdroppers (who have the power to 
send queries to the sensor network). 
 



The authors of (Anand et al. 2005) show a way how the probability of a meaningful eavesdrop 
can be calculated, where meaningful means that the information obtained by the eavesdropper 
helps him to calculate a good estimate of the real aggregatum. The function that measures this 
probability is called eavesdropping vulnerability and it depends on the set of eavesdropped nodes, 
on the adversary’s error tolerance and on the aggregation function used to calculate the 
aggregatum. Eavesdropping vulnerability can be calculated for a group containing only one 
aggregation point or for hierarchical groups, here the goal is to consider how close the adversary 
gets to the aggregatum higher in the tree when he eavesdrops on data in the lower level 
comprising that group (this latter kind of analysis is called eavesdropping vulnerability over a 
hierarchy). 
 
In (Hu et al. 2003), Hu and Evans consider large sensor networks where the sensor nodes 
organize themselves into a tree for the purpose of routing data packets to a single base station 
represented by the root of the tree. Intermediate sensor nodes (i.e., nodes that are not leaves) 
perform aggregation on the data received from their children before forwarding the data to their 
parent. The details of the aggregation are not given, presumably it can be the computation of the 
minimum, the maximum, and the sum (for computing the average at the base station).  
 
Two types of adversaries are considered: adversaries that deploy intruder nodes into the network, 
and adversaries that can compromise a single node in the network. Intruder nodes try to defeat the 
system by introducing bogus data into the network or altering the contents of the packets sent by 
the legitimate nodes. However, they do not have access to any key material. On the other hand, 
adversaries that can compromise a node are assumed to gain access to all the secrets of the 
compromised node. These two types of adversaries are considered separately, meaning that the 
key material of the compromised  node is not distributed to the intruder nodes. 
 
The goal of the adversary is to distort the final aggregated value by either modifying the contents 
of the data packets using the intruder nodes or forwarding a bogus aggregated value to the parent 
of a single compromised node.  
 
The authors make the following system assumptions. The base station is powerful enough to send 
packets to all sensor nodes directly (i.e., in a single hop). On the other hand, sensor nodes can 
only communicate with other nodes in their vicinity. Message delivery between two neighboring 
nodes is reliable. The size of the network is large enough so that most of the nodes are several 
hops away from the base station (and the other nodes). However, the network is dense enough so 
that every node has several neighbors. A shared secret is established between the base station and 
each node in a safe environment before the deployment of the network. 
 
The proposed solution is based on two mechanisms: delayed aggregation and delayed 
authentication. Delayed aggregation means that instead of performing the aggregation at the 
parent node, messages are forwarded unchanged to the grandparent and aggregation is performed 
there. This increases the overall transmission cost but it allows the detection of a compromised 
parent node if the grandparent is not compromised (and by assumption it cannot be compromised 
if the parent is compromised). Delayed authentication does, in fact, refer to the μTESLA protocol 
which allows broadcast authentication with using purely symmetric cryptography.  
 



During the operation phase, leaf nodes send sensor readings to their parents. The integrity of 
these messages is protected by a MAC. Parent nodes compute the aggregated value of the data 
received from their children, but do not forward this aggregated value. Instead a parent node 
forwards the messages (together with their MACs) received from its children to its own parent 
(i.e., the grandparent of its children). In addition, the parent also sends a MAC which is computed 
over the aggregated value. Thus, intermediate nodes receive messages that contain values 
authenticated by their grandchildren, and a MAC on the aggregated value computed by their 
child. An intermediate node verifies the MACs of its grandchildren, computes the aggregated 
value (which should be the same as the one computed by its child) and then verifies the MAC of 
its child. If any of these verification fails, then the node raises an alarm. The idea is that since 
there is only a single compromised node in the network, if the child is compromised then the 
grandchildren are honest. Thus, if the child sends a MAC on a bogus aggregated value, then the 
node will detect this because it also receives the correct input values from the honest 
grandchildren.  
 
MACs are computed with TESLA keys that are shared by the sender of the MAC and the base 
station but not yet known to the other nodes at the time of sending. These keys are disclosed after 
some time delay (specified by the TESLA protocol) by the base station. Thus messages and their 
MACs are stored and verified later, when the corresponding keys are revealed. The base station 
authenticates the disclosed keys by its own current TESLA key, which is also disclosed in a 
delayed manner. 
 
The authors use informal arguments to illustrate that the scheme is resistant to the type of 
adversaries considered. In addition some cost analysis is performed too, which focuses on the 
communication costs of the scheme as sending and receiving messages are the most energy 
consuming operations. Finally some scalability issues are discussed. 
 
In (Przydatek et al. 2003), Przydatek et al. present cryptography based countermeasures against 
the attacker, who wants to distort the aggregatum. The topology assumed is the following. A 
distant home server collects statistics of the measured data, which are the median, the average 
and the minimum/maximum of the sample.  Intermediary nodes, aggregators with enhanced 
computation and communication power are used to optimize the communication need by 
calculating partial statistics on spot over subset of sensors (leaf-nodes in this tree structured 
topology). The communication complexity between the home server and the aggregator is a 
central issue for the optimization of the approach, because it is assumed that in real application 
this is an expensive long-distance communication link.  The case of a single aggregator is 
considered in (Przydatek et al. 2003). Each sensor shares a separate secret key with the home 
server and the aggregator. The data sent from the nodes to the aggregator is authenticated and 
encrypted (using both keys). 
 
The adversary can corrupt a small fraction of the sensors, and by using the compromised key(s) it 
is able to change the measured values arbitrarily. No model is assumed about the statistical 
properties (like probability distribution) of the measured data. Consequently the approach does 
not use outlier tests to detect and filter out corrupted data. While the median is the most common 
and simplest robust statistics, the other two statistics calculated (the average and the min/max) are 
not robust at all, so the protection in this paper is basically not statistical, and the 
countermeasures deployed at the level of the aggregator node(s) are based on cryptographic 



approaches. The main attack is launched against the aggregator (stealthy attack), by corrupting it 
and modifying the aggregated value.  
 
The secure aggregation approach proposed in this paper is based on cryptographic commitment 
and interactive proof techniques. The aggregator sends the aggregate statistics to the home server 
together with a Merkle hash tree based commitment. In the proof step the home server asks the 
aggregator for a randomly selected sub-sample. In this step the aggregator sends the wanted sub-
sample in the form protected by the keys shared between the nodes and the home server. The 
home server checks elements of this sub-sample against the commitment by interacting with the 
aggregator. If this check is successful, i.e., the home server is convinced that the sub-sample is 
really comes from the sample used for the calculation of the commitment and sent by the 
corresponding sensors, it calculates the actual statistics for this sub-sample and compares the 
result to the value sent previously by the aggregator and calculated for the whole sample. If the 
distance between these two values are slight enough, the home server accepts the statistics 
authentic.   
 
The quality of the approach is measured by a pair ),( δε , where δ  is an upper bound on the 
probability of not detecting a cheating aggregator, where the cheating means that the reported 
value sent by the aggregator is not within ε  bounds. 
 
2.3  Input based attacks, statistical countermeasures 
 
One of the most important papers in the field of resilient aggregation in sensor networks is from 
Wagner (Wagner 2004). Wagner assumes an abstract sensor network topology, where the 
inessential underlying physical structures are abstracted away. All the sensor nodes are connected 
with a single base station each over its own separate link. The base station is assumed to be 
trusted and the links are secure and independent, meaning that capturing one sensor node might 
compromise the contents of that node’s channel but it has no influence on the other node’s 
channel. The sensors send their packets directly to the base station via their channel, every packet 
contains a measurement value. The base station collects the measurements from all the sensor 
nodes and then it computes the desired aggregatum with the aggregation function f. The overall 
question is: Which aggregation functions can be securely and meaningfully computed in the 
presence of a few compromised nodes?  
 
The main threat considered is that of malicious data. The adversary is able to inject malicious 
data to the list of sensor measurements by capturing a few nodes and modify their readings, e.g., 
by altering the environment around the sensor or by reverse-engineering the sensor. The 
modification of the sensor’s environment can be considered for example as lighting a lighter near 
to a temperature sensor or as flashing with a flashlight to a photometer sensor. The adversary is 
only able to compromise a small percent of the sensor nodes (at least fewer than the half of the 
network), but he can inject arbitrary values in place of the original readings. Thus, the adversary 
is modelled by the Byzantine fault model. The goal of the adversary is to skew the computed 
aggregate as much as possible. 
 
The term resilient aggregation has been coined in this paper and it refers to those aggregation 
function that are reliable even in the case if some of the sensor nodes are compromised. The 



resiliency of an aggregation function f is measured by the root-mean-square (r.m.s.) error value of 
the function for the best possible k-node attack, where the best possible k-node attack is that one 
which skewes the aggregatum at most. The mathematical framework beyond the root-mean-
square error is based on independent and identically distributed sample elements and on the 
knowledge of the parametrized distribution. An aggregation function is declared to be resilient if 
its r.m.s. error for the best k-node attack is beyond the critical value corresponding to α times the 
root-mean-square error in the uncompromised state, concisely expressed if it is ),( αk -resilient 
for some α that is not too large. The analysis of the paper shows that the commonly used 
aggregation functions are inherently insecure. The min/max, the sum and the average are totally 
insecure, because only one compromised reading can mislead the base station (or generally the 
aggregator) without an upper bound – this means that α becomes infinity. The aggregation 
functions that are secure are the median and the count – these have acceptable α values. The tools 
proposed in (Wagner 2004) to archieve better resiliency is truncation (i.e., if we know that valid 
sensor readings will usually be in the interval [l,u], then we can truncate every input to be within 
this range) and trimming (i.e., throwing away the highest and the lowest part of the input). 
 
The paper is based on strong statistical background and contains a lot of simple proofs which 
help to understand the theory of the root-mean-square error calculation. There were no 
simulations made to demonstrate the viability of the approach and no real-life experience are 
shown. However, this type of investigation does not need any simulation because it is purely 
mathematical. 
 
The spectrum of the potencial application of resilient aggregation is sensor networks is very wide. 
Resilient aggregation is best-suited to settings where the data is highly redundant, so that one can 
cross-check sensor readings for consistency. None the less there are many possible applications 
of such robust aggregation functions, the paper does not mention any of them. But there are 
scenarios where aggregation should not be applied, for instance in fire-detection or in any 
systems searching for a needle in the haystack. 
 
Wagner’s idea has been developed further by Buttyán et al. in (Buttyán et al. 2006). In (Buttyán 
et al. 2006), the abstract topology is the same as in the previous paper. The sensor nodes perform 
some measurements and send their readings to the base station. The base station runs the 
aggregation procedure (after an analysis phase) and it is assumed to be reliable. The 
communication between the nodes and the base station is assumed to be secure – there are 
effective cryptographic techniques to protect it and resilient aggregation is not concerned with 
this problem. Nonetheless, some percentage of the sensor readings can be compromised by 
artificially altering the measured phenomena.  
 
The adversary is allowed to modify the sensor readings before they are submitted to the 
aggregation function. The affected sensors are chosen randomly without knowing their readings 
(myopic attacker). The adversary’s goal is to maximize the distortion of the aggregation function, 
defined as the expected value of the difference between the real parameter and the computed one. 
In addition, the adversary does not want to be detected, or more precisely, he wants to keep the 
probability of successful detection of an attack under a given small threshold value. This criterion 
upper bounds the possibilities of the adversary, even for aggregation functions that were 
considered to be insecure earlier. 



 
The novel data aggregation model in (Buttyán et al. 2006) consists of an aggregator function and 
of a detection algorithm. The detection algorithm analyzes the input data before the aggregation 
function is called and tries to detect unexpected deviations in the received sensor readings. In 
fact, trimming (proposed by Wagner in (Wagner 2004)) is a special case of this more general 
idea. The detection algorithm uses the technique of sample halving, i.e., it first halves the sample 
and computes the sum of the halves separately. Then it subtracts the two sums from each other 
and indicates attack if the result is above a limit. The concrete value of this limit can be 
calculated from the desired false positive probability (i.e., when there is no attack but the 
detection algorithm indicates attack). As it can be seen, (Buttyán et al. 2006) uses a natural 
statistical tool to analyze the skewness of the distribution of the sensor readings and to filter out 
unusual samples. However, to filter out something that is unusual, we need some a priori 
knowledge about what is usual. Here the assumption is that the sensor readings are independent 
and identically distributed and that the variance of the sample is 1.  
 
The efficiency of this novel data model and the sample halving technique is measured by the 
probability of successful detecting an attack. This probability is shown as a function of the 
distortion archieved by the adversary for different number of compromised sensors. Thanks to the 
detection algorithm, the probability of an attack detection grows steeply even for small ammount 
of compromised sensor readings and thus the archievable distortion is strictly upper bounded. 
 
3   Outliers and Robust Statistics 
 
By modifying the readings of the compromised sensors, or by manipultaing the sensors’ physical 
environment (in order to influence their measurements), the adversary contaminates the samples 
received by the aggregation function with bogus data. Methods for eliminating the effects of 
bogus data have been extensively studied in statistics (although not with a determined adversary 
in mind), and we find it useful to summarize the main achievements in this field here. Thus, after 
a brief introduction, we give an overview of outlier tests and robust statistics in this section. 
 
An outlier is an observation, which is not consistent with the data, meaning that we have some 
assumptions about the statistical characteristics of the data (e.g., the type of distribution) and 
some data points do not fit this assumption.  
 
If an outlier is really an error in the measurement, it will distort the interpretation of the data, 
having undue influence on many summary statistics. Many statistical techniques are sensitive to 
the presence of outliers. For example, simple calculations of the mean and standard deviation 
may be distorted by a single grossly false data point. The most frequently cited common example 
is the estimation of linear regression from sample contaminated with outliers: Because of the way 
in which the regression line is determined (especially the fact that it is based on minimizing not 
the sum of simple distances but the sum of squares of distances of data points from the line), 
outliers have a dangerous influence on the slope of the regression line and consequently on the 
value of the correlation coefficient. A single outlier is capable of considerably changing the slope 
of the regression line and, consequently, the value of the correlation. Therefore it is tempting to 
remove atypical values automatically from a data set. However, we have to be very careful: if an 
"outlier" is a genuine result (a genuine extreme value), such a data point is important because it 
might indicate an extreme behavior of the process under study. No matter how extreme a value is 



in a set of data, the suspect value could nonetheless be a correct piece of information. Only with 
experience or the identification of a particular cause can data be declared 'wrong' and removed. 
 
Accordingly outlier tests and elimination of detected outliers are appropriate if we are confident 
about the distribution of the data set. If we are not sure in that, then robust statistics and/or non-
parametric (distribution independent) tests can be applied to the data. 
 
If we know extreme values represent a certain segment of the population, then we must decide 
between biasing the results (by removing them) or using a nonparametric test that can deal with 
them. In statistics, classical least squares regression relies on model assumptions (the Gauss-
Markov hypothesis) which are often not met in practice. 'Nonparametric' tests make few or no 
assumptions about the distributions, and do not rely on distribution parameters. Their chief 
advantage is improved reliability when the distribution is unknown. However, non-parametric 
models give very imprecise results, compared to their parametric counterparts. Therefore, a 
compromise between parametric and non-parametric methods was created: robust statistics. 
 
The aim of robust statistics is to create statistical methods which are resistant to departure from 
model assumptions, i.e., outliers. If there is no reason to believe that the outlying point is an error, 
it should not be deleted without careful consideration. However, the use of more robust 
techniques may be warranted. Robust techniques will often downweight the effect of outlying 
points without deleting them. Robust statistics include methods that are largely unaffected by the 
presence of extreme values. Therefore the three approaches handling data seemingly 
"contaminated" with "atypical" points are the following: 

• Outlier tests, 
• Robust estimates, 
• Non-parametric methods. 

 
Below the main approaches in outlier testing and robust statistics are summarized. 
 
3.1 Outlier tests 
 
There are outlier tests which perform quite good across a wide array of distributions, like the Box 
Plot which is a traditional graphical method, however can also be automated. We mark the largest 
data point that is less than or equal to the value that is 1.5 times the interquartile range (IQR) 
above the 3rd quartile. Similarly we mark the smallest data point that is less than or equal to the 
value that is 1.5 times the interquartile range (IQR) below the 1st quartile. Data point above or 
below this upper and lower marks (so called whiskers) is considered an outlier. Why 1.5 IQRs? 
John Tukey, the inventor of Box Plot, commented: "1 is too small and 2 is too large." Really, in 
practice this outlier rule is quite good across a wide array of distributions.  
 
For instance, consider the following ranked data set of daily temperatures in winter season:  

5,4,2,1,2,3,4,7,15 ++++−−−−−  
 
Here is an example, using the first set of numbers above using Tukey's method of determining Q1 
and Q3. From 41 −=Q , 23 +=Q , we get IQR = 6. Now 1.5 times 6 equals 9. Subtract 9 from the 
first quartile: 1394 −=−− . Note that 15−  is an outlier, and the whisker should be drawn to 7− , 



which is the smallest value that is not an outlier. Add 9 to the third quartile: 1192 =++ . Any 
value larger than 11 is an outlier, so in this side we have no outlier. Draw the whisker to the 
largest value in the dataset that is not an outlier, in this case 5+ . Since this value is the 3rd 
quartile, we draw no whisker at all. Mark 15−  as outlier.  
 
Tests are more sharp if we know something about the underlying distribution of data. Assuming 
the knowledge of the mean and the standard deviation some researchers use simple quantitative 
technique to exclude outliers. They simply exclude observations that are outside the range of ±2 
standard deviations (or even ±1.5 sd's) around the mean. Refining this method we can draw 
confidence intervals also for the mean, which give us a range of values around the mean where 
we expect the "true" (population) mean is located (with a given level of certainty). For example, 
if the (sample) mean is 12, and the lower and upper limits of the 05.0=p  confidence interval are 
8 and 16 respectively, then we can conclude that there is a 95 percent probability that the 
population mean is greater than 8 and lower than 16. The width of the confidence interval 
depends on the sample size and on the variation of data values. The larger the sample size, the 
more reliable its mean. The larger the variation, the less reliable the mean. The standard 
calculation of confidence intervals is based on the assumption that the variable is normally 
distributed in the population. The estimate may not be valid if normality assumption is not met, 
unless the sample size is large, say 100=n  or more, which is not unusual in case of sensor 
networks. 
 
There are outlier tests which are explicitly based on the assumption of normality. A typical such 
test is the Grubbs' test, which is also known as the maximum normed residual test. Grubbs' test 
detects one outlier at a time. This outlier is expunged from the set of data and the test is iterated 
until no outliers are detected. More formally, Grubbs' test is defined for the hypothesis: 

H0: There are no outliers in the data set. 
H1: There is at least one outlier in the data set. 

 
The Grubbs' test statistic is defined as: 

sxxG i −= max1  
with x and s denoting the sample mean and standard deviation, respectively. In words, the 
Grubbs' test statistic is the largest absolute deviation from the sample mean in units of the sample 
standard deviation. This is the two-sided version of the test. The Grubbs' test can also be defined 
as one of the following one-sided tests: we can test if the minimum value is an outlier 

sxxG min2 −=  
with xmin denoting the minimum value. Similarly we can test if the maximum value is an outlier 

sxxG max3 −=  
with xmax denoting the maximum value. The critical values are calculated according to Student t-
distribution with appropriate degree of freedom (Grubbs 1969).  
 
There are approaches, like the Random Sample Consensus approach (RANSAC) (Fischler et al. 
1981), which rely on random sampling selection to search for the best fit. The model parameters 
are computed for each randomly selected subset of points. Then the points within some error 
tolerance are called the consensus set of the model, and if the cardinality of this set exceeds a pre-
specified threshold, the model is accepted and its parameters are recomputed based on the whole 



consensus set. Otherwise, the random sampling and validation is repeated as in the above. Hence, 
RANSAC can be considered to seek the best model that maximizes the number of inliers. The 
problem with this approach is that it requires the prior specification of a tolerance threshold limit 
which is actually related to the inlier bound. In Section 4, we will present a possible application 
of the RANSAC approach. 
 
The Minimum Probability of Randomness (MINPRAN) (Stewart 1995) is a similar approach, 
however it relies on the assumption that the noise comes from a well known distribution. As in 
RANSAC, this approach uses random sampling to search for the fit and the inliers to this fit that 
are least likely to come from the known noise distribution. 
 
3.2 Robust statistics 
 
As it was mentioned above, robust techniques will often downweight the effect of outlying points 
without deleting them. Several questions arise: How many outliers can a given algorithm 
tolerate? How can we describe the influence of outliers on the algorithm? What are the properties 
desirable for robust statistical procedures? Accordingly, three basic tools are used in robust 
statistics to describe robustness: 

1. The breakdown point, 
2. The influence function, 
3. The sensitivity curve. 

 
Intuitively, the breakdown point of an estimator is the maximum amount of outliers it can handle. 
The higher the breakdown point of an estimator, the more robust it is. The finite sample 
breakdown point *

nε  of an estimator Tn at the sample ),,( 1 nxx …  is given by 
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where ),,( 1 nzz …  is obtained by replacing the m data points ),,(
1 mii xx …  by arbitrary values 

),,( 1 nyy … . The maximum breakdown point is 0.5 and there are estimators which achieve such a 
breakdown point. For example, the most commonly used robust statistics, the median, has a 
breakdown point of 0.5. 
 
As for the influence function we distinguish the empirical influence function and the (theoretical) 
influence function (Hampel et al. 1986). The empirical influence function gives us an idea of how 
an estimator behaves when we change one point in the sample and no model assumptions is 
made. The definition of the empirical influence function EIFi at observation i is defined by 
replacing the i-th value xi in the sample by an arbitrary value x and looking at the output of the 
estimator (i.e., considering it as a function in variable x): ),,,,,,( 111 niin xxxxxT …… +− . 
 
The influence function tells us what happens to an estimator when we change the distribution of 
the data slightly. It describes the effect of an infinitesimal "contamination" at the point x on the 
estimate. Let xΔ  be the probability measure which gives probability 1 to x. The influence 
function is then defined by: 
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A good influence function is qualified by the following properties: finite rejection point, small 
gross-error sensitivity and small local-shift sensitivity.  
 
The rejection point is defined as the point beyond which function IF becomes zero (Goodall 
1983), formally 
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r
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Observations beyond the rejection point have zero influence. Hence they make no contribution to 
the final estimate. However, a finite rejection point may result in the underestimation of scale. 
This is because when the samples near the tails of a distribution are ignored, too little of the 
samples may remain for the estimation process (Goodall 1983). 
 
The Gross Error Sensitivity expresses asymptotically the maximum effect a contaminated 
observation can have on the estimator. It is the maximum absolute value of the IF when x is 
varied.  
 
The Local Shift Sensitivity (l.s.s.) measures the effect of the removal of a mass at x and its 
reintroduction at y. For a continuous and differentiable IF, l.s.s. is given by the maximum 
absolute value of the slope of IF at any point: 
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General constructions for robust estimators are the M-estimators (Rey 1983). A motivation 
behind M-estimators can be a generalization of maximum likelihood estimators (MLE). MLE are 
therefore a special case of M-estimators (hence the name: "generalized Maximum likelihood 
estimators"). The M-estimate, ),,( 1 nxxT …  for the function ρ  and the sample nxx ,,1 …  is the 
value that minimizes the following objective function 
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i.e., the estimate T of the parameter is determined by solving 
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One of the main reasons for studying M-estimators in robust statistics is that their influence 
function is proportional to ))(;(),,(: FTxbFTxIF ψψ = . When the M-estimator is equivariant, 
i.e., axxTaxaxT nn +=++ ),,(),,( 11 …… , for any real constant a then we can write functions ψ  
and ρ  in terms of residuals tx − . If additionally scale estimate S is used we obtain the, so called, 
scaled residuals Stxr )( −= , and we can write ))(()( Stxr −=ψψ  and ))(()( Stxr −= ρρ . 



For the purpose of scale estimate most M-estimators use the MAD (Median Absolute Deviation). 
For example 2)( 2rr =ρ  (least-squares) estimators are not robust because their influence 
function is not bounded; if no scale estimate (i.e., formally, 1=S ) is used we get back the mean 
as estimate. rr =)(ρ  estimators reduce the influence of large errors, but they still have an 
influence because the influence function has no cut off point; using this estimator we get the 
median. For more details about M-estimators and their robustness we refer the reader to (Huber 
1981) and (Rey 1983). 
 
The W-estimators (Goodall 1983) represent an alternative form of M-estimators. The L-
estimators are also known as trimmed means for the case of location estimation (Koenker et al. 
1978). All the above estimators are either obliged to perform an exhaustive search or assume a 
known value for the amount of noise present in the data set (contamination rate). When faced 
with more noise than assumed, these estimators will lack robustness. And when the amount of 
noise is less than the assumed level, they will lack efficiency, i.e., the parameter estimates suffer 
in terms of accuracy, since not all the good data points are taken into account. 
 
Now that we have got an inside view of robust statistics, in Section 4, we will present an example 
how to use the above mentioned RANSAC paradigm to build a filtering and model fitting tool 
that can be applied in resilient aggregation in sensor networks. 
 
4   An example of the RANSAC approach 
 
Usually it is impossible to protect the sensor nodes from malicious mishandling, therefore, we 
need resilient aggregation techniques to treat the situation of receiving some amount of bogus 
data. The RANSAC paradigm is capable of handling data containing a significant percentage of 
gross errors by using random sampling. That makes it suitable for environments such as sensor 
networks where the sensors can be affected by compromising their measurements and that is why 
it can be convenient as a building block in robust statistical tools. 
 
RANSAC is the abbreviation of Random Sample Consensus and it defines a principle how non-
consistent data can be filtered from a sample, with other words, how a model can be fitted to 
experimental data (smoothing). The principle is the opposite to that of conventional smoothing 
techniques: Rather than using as much of the data as possible to obtain an initial solution and then 
attempting to eliminate the non-consistent data elements, RANSAC uses as few of the data as 
feasible to determine a possible model and then tries to enlarge the initial datum set with the 
consistent data. Algorithm 1 shows how the RANSAC principle can work as the heart of an 
algorithm. 
 



 
 

For example, if the task is to fit a circle to a set of points with two-dimensional coordinates, then 
the above algorithm would randomly choose three points for the initial set S (since three points 
are required to determine a circle), and would fit a circle to this three points (this circle would be 
model M). With this the algorithm would enlarge the initial set with all the points that are not too 
far from the arc of the circle (this would be S*, called also the consensus set of S). If the size of 
the consensus set is above a threshold, then the algorithm would finish by fitting a final circle by 
considering all the points within the consensus set. If the consensus set is too small, then the 
algorithm would drop S and would retry to establish a suitable S* by picking another three points 
and running the algorithm again. If after some number of trials the algorithm would not find a 
suitable consensus set, it would finish with the best possible fit (that would include more errors 
than desired) or would return with an error message. 
 
4.1  The applied RANSAC algorithm 
 
To show how to use the RANSAC paradigm in resilient aggregation, we have implemented a 
filtering function based on this paradigm that filters out outlier measurements supposing that all 
the samples are independent and normally distributed (with the same parameters) in the 
uncompromised case. For sake of simplicity we have called it the RANSAC algorithm. Notice, 
that we assumed nothing about the expected value or the standard deviation of the distribution.  
 
Our RANSAC algorithm is applied against an attacker who can distort some sensor 
measurements. The assumptions we have made on the attacker are the following. The attacker 
has limited power resources, but he has full control over some part of the sensor network, so he 
knows the concrete values measured by the compromised nodes and he can arbitrarily modify the 
values sent to the base station. The attacker knows the applied RANSAC algorithm in detail, but 
he cannot horn in it since it runs on the base station which is assumed to be secure. The attacker 
also knows that the sample is normally distributed. The sensors communicate with the base 
station by cryptographically protected messages so the attacker cannot modify the messages after 
they were encrypted. However, there is no need for it, because the attacker can arbitrary modify 
the messages of the compromised nodes just before the encryption. The attackers object is to 



cause as high distortion in the aggregation result as possible while remaining undetected (stealthy 
attack). 
 
We investigated a naive attacker who simply modifies all the compromised sensor measurement 
values to one common value. For example, if the attacker wants the cooling system to turn on, 
then he lights a lighter just beside one (or more) temperature sensors. That implies a peak in the 
histogram of the sample received by the base station. The attacker is able to set this peak to an 
arbitrary place in the histogram, with other words, he can modify the measured values to an 
arbitrary common one. 
 
The working of the RANSAC algorithms is as follows (see Figure x.1). The base station receives 
the sample compromised previously by the attacker. The sample is the input of the RANSAC 
algorithm along with an upper estimation of the percentage of compromised nodes κ, and the 
required confidence level α. At first, a bag S of minimum size will be randomly chosen to 
establish a preliminary model. Here we use bag instead of set because the sample may contain 
repetitive elements. The size of bag S is s, the model M is the theoretical histogram of the 
empirical Gaussian distribution with the expected value of 
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with the restriction that 2σ̂  cannot be 0. 
 
After the histogram is imagined, the algorithm checks whether the sample is consistent with the 
histogram or not. The algorithm collects those elements from the sample that can be fit to the 
theoretical histogram and temporally drops the other elements. This phase is denoted by Depute 
S* on Figure x.2 and can be described as 
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where yx is the number of elements with a value of x that should not be dropped, n is the size of 
the sample, cx is the number of elements in the sample with a value of x and )ˆ,ˆ|( σθφ x  is the 
probability density function of the Gaussian distribution. The bag  
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is the consensus bag of S. If the size of S* is smaller than a required size t then the algorithm 
starts again from the beginning, otherwise S* will be forwarded to the aggregator. There is an 
upper bound on the maximum number of retrials denoted by f. If there were more iterations than 
f, the algorithm ends with failure. The aggregator can be of any kind, here we used the average to 
estimate the expected value of the distribution of the sample. The value produced by the 
aggregator is M*. 
 



 
Fig. x.2. The RANSAC algorithm 

 
The RANSAC algorithm consists of three parameters that have not been defined yet. These are 
the size s of the initial bag S, the required size t of the consensus bag S* and the maximum 
permitted number f of  iterations. 
 
The size s of the initial bag is desired to be as small as possible according to the RANSAC 
paradigm. For the RANSAC algorithm, we need to establish a theoretical histogram according to 
a Gaussian distribution. The Gaussian distribution has two parameters, the expected value and the 
standard deviation. The expected value can come from only one element, but for the standard 
deviation we need at least two elements. That was the motivation by the choice of 2=s . 
 
The required size t of the consensus bag is the most important parameter in the algorithm, 
however, the RANSAC paradigm does not gives us any hint about the correct choice of its value. 
If t is small, then the algorithm has a higher probability to succeed, but the aggregatum at the end 
will contain a high level of error caused by the attacker. If t is too big, the algorithm cannot work 
because of the high expectations on the number of elements in the final bag. Nevertheless, we 
required the algorithm to be as effective as possible by filtering all the attacked elements: 

nt )1( κ−=  
where κ is the upper estimation for the number of attacked sensor nodes and n is the total number 
of sensor nodes in the network. 
 
The maximum number f of iterations can be figured on probabilistic analysis. Assuming that we 
need only one S bag that satisfies the criterion that it does not contain compromised elements, we 
can try to select s elements for S as long as the probability of finding a correct S is beyond a given 
value α−1 , where α is the confidence level. Since the elements are selected without 
replacement, the probability of taking a good S is 
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and we require 
α−≥ 1f

SP  
This leads to 

α
SPf −≥ 1log  

We have chosen 
1log1 += − α

SPf , 
because there is no need for a higher perturbation. The value of f is related to the punctuality of 
the algorithm as well as the confidence level α. Since the confidence level is an input of the 
algorithm, the value f can be controlled through the proper choice of α. 
 
4.2  Results of the simulations 
 
To validate the RANSAC algorithm, we have implemented it in a simulation environment. The 
parameters for the simulation are included in Table 1. 
 

Table 1. Simulation Parameters 
Parameter name Value 
n (sample size) 100 
Sample distribution ),( σμN  
μ (expected value, unknown to the algorithm) 0 
σ (standard deviation, unknown to the algorithm) 1 
s (size of random set) 2 
α (confidence level) 0.01 

 
The sample for the simulations has been generated using the randn function of Matlab. After the 
attacker has compromised κn nodes (i.e., he set the value of κn nodes to a fixed value), the 
RANSAC algorithm analyzes the modified sample by trying to establish a model that fits at least 
t readings. If the algorithm can not make it in f iterations, it stops in failure. In this case either α 
was too low or κ was too high and so the algorithm could not estimate under the given criteria. 
 



 
Fig. x.3. A typical simulation result and its explanation 

 
Figure x.3 shows a typical results for the maximum distortion achieved by the attacker as a 
function of the place of the peak (i.e., the value to which it sets the readings of the compromised 
sensors), where the maximum is taken over 50 simulation runs, and 05.0=κ  (i.e., the proportion 
of compromised nodes is 0.05 which means that 5 nodes were compromised). The distortion is 
defined as the absolute value of the difference between the real average and the estimated average 
produced by the RANSAC algorithm. Notice, that the expected value of the test data is 0, 
therefore Figure x.3 is nearly symmetrical to 0=x . The slight asymmetry comes from the 
randomness of the input data. 
 
As it can be seen on the figure, the adversary can never achieve a distorion more than 0.6. This 
means that the estimated average will be always in the range )6.0,6.0(−  surrounding the real 
average given that 5 nodes out of 100 are compromised. In other words, the adversary can perturb 
the compromised readings with an arbitrary value, but this will not significantly change the 
estimate. Moreover, this )6.0,6.0(−  bound is independent of the expected value of the sample, 
thus for a higher expected value, the relative distortion (i.e., distortion divived by the expected 
value) can be arbitrarily small. 
  
Figure x.3 tells us even more about the algorithm. The steeply ascending lines composed of 
points correspond to accepting some elements from the peak after the filtering phase. For some x 
values, it looks like there would be two distinct values for the same x value. For example at 

22−=x , the two lines composed of points appear as if they both had a value for this value of x. 
As a matter of fact, there is only one y value for every x, but in some cases the algorithm is 
uncertain to accept a compromised reading. In a small range surrounding 22−=x , the algorithm  
accepts a compromised reading in some cases and drops it in another cases. This implies points 
that look like if they belonged to the same x. Some additional bursts on the figure stem from the 
inaccuracy of the approximation of the Gaussian distribution and from the random property of the 



algorithm. As it can be seen, it is meaningless for the adversary to push the peak too far from the 
average because the highest distortion occurs when the peak is about 10 units far from the real 
average. Above the distance of approximately 42 units the peak will have no influence on the 
estimated average (i.e., it will be always filtered out by the algorithm). The unit can be of any 
kind, for example degree in case of a thermometer sensor or lumen in case of a photometer 
sensor. 
 

 
Fig. x.4. Demonstration of the breakdown point 

 
Another demonstration on the performance of the RANSAC algorithm is Figure x.4. This shows 
the highest reacheable distortion (y axis) as a function of different values of κ (x axis). We made 
50 simulation runs with the same parameter set for each values of κ and plotted out the one with 
the maximum distortion. As one can see, the RANSAC algorithm reaches the theoretical 
maximum of the breakdown point, since the distortion never goes to infinity for 5.0≤κ  (which 
means that at most 50% of the nodes are compromised). Notice, that the theoretical maximum for 
the breakdown point is 0.5. Another important issue is that the RANSAC algorithm strictly upper 
bounds the reacheable distortion even for high values of κ. For example, for a node 
compromisation ratio of 45% ( 45.0=κ ) the error is upper bounded in 3 units. This means, that 
even if almost the half of the nodes send bogus information to the base station, the RANSAC 
algorithm is capable to produce a result with at most 3 units of perturbation. 
 
5   Conclusions 
 
In typical sensor network applications, the sensors are left unattended for a long period of time 
once they have been deployed. In addition, due to cost reasons, sensor nodes are usually not 
tamper resistant. Consequently, sensors can be easily captured and compromised by an adversary. 
Moreover, when a sensor is compromised, it can send authentique messages to other nodes and to 
the base station, but those messages may contain arbitrary data created by the adversray (e.g., 
bogus measurments). Even if we assumed that the adversary is less powerful or that the nodes are 
tamper resistant, the adversary can still perform input based attacks, meaning that it can directly 



manipulate the physical environment monitored by some of the sensors, and in this way, it can 
distort their measurements and the output of the aggregation mechanism at the base station. The 
task of resisilient aggregation is to perform the aggregation despite the possibility of the above 
mentioned attacks, essentially by supressing their effect. 
 
Resilient aggregation cannot be based on pure cryptographic countermeasures (e.g., message 
authentication) and/or reliability mechanisms (e.g., diversification techniques). Statistical 
methods, such as extreme value detection and robust statistics, are relevant and inevitable 
additional elements in protecting data aggregation mechanisms in sensor networks. However, 
their efficiency basically depends on the accuracy of the model describing the characteristics of 
the data as a statistical sample. This means, for instance, that we have some a priori information 
about the probability distribution of data, the normal range of time-variability of the main 
statistical characteristics, the statistical dependence between measurements of certain groups of 
sensors etc. Many statistical techniques are available, and the task of the designer of the resilient 
aggregation scheme is to find the appropriate and valid adversary model, distortion measure, and  
description of the sample, as well as to appropriately apply the toolkit provided by statisticians. 
 
Besides giving an overview of the state-of-the-art in resilient aggregation in sensor networks, and 
a brief summary of the relevant techniques in the field of mathematical statistics, we also 
introduced a particular approach for resilient aggregation in somewhat more details. This 
approach is based on RANSAC (RAndom SAmple Consensus), which we adopted for our 
purposes. We presented some initial simulation results about the performance of our resilient data 
aggregation scheme, where we assumed a priori knowledge of the type of the distribution of the 
clean sample, and a particular type of adversary. These results show that the our RANSAC based 
approach is extremely efficient in this particular case, as it can cope with a very high fraction of 
compromised nodes. In our future work, we intend to further develop the RANSAC approach for 
resilient aggregation by also considering correlated samples and fewer assumptions about the 
distribution. 
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